
Refactoring Recommendations Based on the
Optimization of Socio-Technical Congruence

Manuel De Stefano∗, Fabiano Pecorelli∗, Damian Andrew Tamburri†, Fabio Palomba∗, Andrea De Lucia∗
∗SeSa Lab

University of Salerno, Italy
m.destefano36@studenti.unisa.it

{fpecorelli, fpalomba, adelucia}@unisa.it
†Jheronimus Academy of Data Science, The Netherlands

d.a.tamburri@tue.nl

Abstract—Software development is known to be a social activ-
ity that involves developers, project managers, and stakeholders.
Recent studies have proved a direct relation between social
and technical aspects, e.g., poor coordination among developers
may lead to an increase of technical debt in source code.
The so-called socio-technical congruence measures the level
of coordination existing in an organization at their different
levels. In this late-breaking idea paper, we propose a novel
way to employ the socio-technical congruence in the context of
source code quality improvement: we design a community-based
refactoring recommendation approach that aims at optimizing
socio-technical congruence while keeping into account the source
code dependencies among the components of a software project.
A search-based algorithm is employed to this purpose and we
envision the novel approach to be suitable for providing Extract
Class and Extract Package refactoring recommendations.

Index Terms—Refactoring; Search-based Software Engineer-
ing; Recommendation Systems.

I. INTRODUCTION

Software needs continuously to change to keep being use-
ful, as Lehman stated [1], so developers have to conduct
maintenance activities to keep the software useful to the end-
user. Sometimes, maintenance activities have no reflection on
external behavior, but they are fundamental as well: these
are called refactoring activities, that have the aim to improve
the design and the quality of the existing source code under
various aspects (e.g., readability, understandability, cohesion,
coupling, ecc.) [2]. Unfortunately, refactoring it is not a trivial
activity, in particular when it affects the software architec-
ture. To support developers in refactoring activities, tools and
techniques aimed to refactor the source code automatically
have been proposed. However, only a few of them are able
to address large scale re-modularization [3], which indeed
cannot be performed as a big bang operation, but rather
as small, commit-friendly steps [4]. These kinds of tools
only consider the structural characteristics of source code and
propose refactoring based only on this information.

Over the last years, researchers have been investigating the
impact of developers’ social networks on the sustainability
of open- and closed-source communities as well as source
code quality, finding them to be a highly relevant factor for
the success of software systems [5], [6], [7]. Socio-Technical

congruence [5], defined as a metric used to investigate how
proper the alignment or fit is between the organizational
structure and the software architecture, has proven to play a
central role in quality issues. As an example, Kwan et al.
[6] showed that this alignment affects the build success. At
the same time, Palomba et al. [7] found that community-
related factors can increase the criticality of source code
quality issues. These social aspects, however, have rarely been
considered when taking decisions about software architecture,
although they influence each other.

So, as of a late-breaking idea, in this paper, we propose
a technique that, exploiting socio-technical aspects can rec-
ommend both structural refactorings, e.g., extract class and
extract package refactorings, and social refactoring, intended
as a community restructuring and teams rearrangement. By
mining software repositories, we can construct three graphs,
representing the communication among developers (dev-dev
graph), the collaboration among developers (dev-file graph),
and the static dependencies among files (file-file graph),
and then combine them in one augmented weighted graph,
representing the socio-technical congruence in the software’s
architecture. This graph si fed into a GA, to find the best set
of relationships between developers and components.

II. THE TECHNIQUE

The proposed technique is mainly made up of two steps,
as depicted in Fig. 1. First, for a given project, its software
repository is mined to acquire all the information required by
our technique. Secondly, a genetic algorithm is executed to
compute an improved version of the socio-technical structure
of the project under analysis. In the following, we describe
these two steps more deeply.

A. Repository Mining

The first step consists of mining the software repository
to obtain information about communication and collaboration
among developers and dependencies among source files. We
represent them by using three graphs, namely the dev-dev
graph (for communication), the dev-file graph (for collabora-
tion), and file-file graph (for code dependencies)—the obtained
information span on a customizable time interval.



Fig. 1. Schema of the technique’s steps

The first graph can be obtained mining the issue tracker
conversations, resulting in an undirected weighted graph in
which the nodes represent the developers and the edges the
communications among them. If a developer participated in
at least one issue thread with another developer, an edge
is created to connect them. The weights are represented by
the total number of replies given in a shared thread, without
considering the criticality of the issue. The dev-file graph
is obtained considering the commits made by developers on
source files. The obtained graph is indeed bipartite, as we
have only two types of nodes, developer and file, connected.
A developer node is connected to a file node if the developer
has committed at least once that file in the considered time
interval. The weight on the edges consists of the developer’s
total number of commits on that file in the considered interval.
Although there are some other social aspects that have been
overlooked (i.e., developers’ role), these two are the only one
that can actually be extracted directly mining the repository.
The file-file graph, finally, is obtained considering structural
code dependencies. A file node is connected with another if it
contains a reference to a code component contained in another
file or vice versa. The obtained graph is then undirected,
and the weights on the edges represent the actual number of
references present among the two source files.

At the end of phase one, as Fig. 1 depicts, these three graphs
are merged to have all the communication, collaboration, and
coupling information represented by one single structure. As
the figure shows, this merge consists in connecting the dev-dev
and the file-file graph using the dev-file as a sort of bridge.
This construction could be imagined as if we lie down the
dev-dev and the file-file package on two parallel plains and
connect the nodes present on these plain using the dev-file
edges.

B. Graph Optimization and Refactoring Recommendation

The second phase of the technique involves executing a
many-objective Genetic Algorithm (GA) to find an improved
version of the starting graph, given as input by the previous
phase. In order to execute the GA, the augmented graph needs
to be converted into a representation suitable for the GA, as
shown by the schema in Fig. 1. This is relatively easy as the
adjacency matrix can be directly employed to represent the
graph as a two-dimensional vector suitable for the GA.

Starting from an initial population, in which each individual
is represented by an adjacency matrix that is structured in
the same manner of the starting matrix and pseudo-randomly
generated based on it, the GA iteratively generates higher-

quality solutions based on three main objectives aiming at
maximizing the communication and the collaboration between
developers and minimizing the coupling among components.
Besides these three objectives, it is also essential to maximize
the similarity between the output graph and the starting one to
prevent the GA from excessively altering the original structure
while optimizing the objectives. The equation 1 reports the
fitness function we define. For the sake of comprehensibility
we refer to different parts of the graph with different names,
i.e., Gdev−dev , Gdev−file, and Gfile−file.

f(G)=



max(
∑

comdi,dj )∀(di, dj) ∈ Gdev−dev

max(
∑

min(coldi,f , coldj ,f )∀(u, v) ∈ Gdev−file

min(
∑

coufi,fj )∀(u, v) ∈ Gfile−file

min(dist(Gs, G))
(1)

where comdi,dj is the degree of communication between de-
velopers di and dj in the dev-dev graph, max(colui,v, coluj ,v)
represents the number of co-commits of developers di and dj
on the file f , coufi,fj is the degree of coupling between files fi
and fj , and dist(Gs, G) is the minimum number of operations
to transform graph Gs to graph G.

At each iteration, an offspring population is generated
selecting the best individuals of the current population (based
on their fitness scores) and creating new ones using the repro-
duction, consisting of two operators: mutation and crossover.
The mutation operator we define consists of adding/removing
edges in a particular individual, while the crossover between
two graphs is applied by exchanging entire sub-graphs with
each other. We implemented these operations by applying Tsai
et al. directives [8]. The GA runs until the budget expires, and
then the fittest solution is chosen as a refactoring target. Please
note that the provided solution is just a preliminary step toward
a complete refactoring recommendation approach. It can be
used to extract information about the main problems in the
starting socio-technical structure and on how to refactor them.

III. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel search-based
approach for refactoring recommendations of socio-technical
structures. Our approach is suitable to optimize not only the
coupling between software components, but also the way
developers communicate and collaborate. As future work, we
first plan to validate the socio-technical graph construction
approach by exploiting a dataset of projects that have been
already analyzed in the context of community-related and
architectural aspects. Then we plan to conduct an empirical
study aiming at assessing the architecture’s quality improve-
ment after applying the refactoring operations recommended
by the technique, taking computational efficiency of such
approach in this day-to-day activity as well. Finally, we plan to
consider other social aspects (e.g., developers’ knowledge or
role) in order to perform a better optimization and taking into
account both social and structural history (i.e., team changes
and file changes) to get better and safer optimizations.



REFERENCES

[1] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[2] M. Fowler, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

[3] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch:
A clustering tool for the recovery and maintenance of software sys-
tem structures,” in Proceedings IEEE International Conference on Soft-
ware Maintenance-1999 (ICSM’99).’Software Maintenance for Business
Change’(Cat. No. 99CB36360). IEEE, 1999, pp. 50–59.

[4] M. Hall, M. A. Khojaye, N. Walkinshaw, and P. McMinn, “Establishing
the source code disruption caused by automated remodularisation tools,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 466–470.

[5] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical con-
gruence: a framework for assessing the impact of technical and work
dependencies on software development productivity,” in Proceedings of
the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, 2008, pp. 2–11.

[6] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” IEEE Transactions on Software Engineering, vol. 37,
no. 3, pp. 307–324, 2011.

[7] F. Palomba, D. A. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman,
and A. Serebrenik, “Beyond technical aspects: How do community smells
influence the intensity of code smells?” IEEE transactions on software
engineering, 2018.

[8] M.-W. Tsai, T.-P. Hong, and W.-T. Lin, “A two-dimensional genetic algo-
rithm and its application to aircraft scheduling problem,” Mathematical
Problems in Engineering, vol. 2015, 2015.


