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ABSTRACT
Quantum computing is no longer just a scientific curiosity;
it is rapidly evolving into a commercially viable technology
that has the potential to surpass the limitations of classical
computation. As a result of this transition, a new discipline
known as quantum software engineering has emerged, which
is needed to describe unique methodologies for developing
large-scale quantum applications. In the pursue of building
this new body of knowledge, we undertake a mining study
to elicit the purposes quantum programming is being used
for, and steer further research.
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1 INTRODUCTION AND MOTIVATION
The dream has come true [18]: several physicists and computer
scientists agree that quantum technology is right around the
corner [17, 18] and that the 21st century will be recalled
as the «quantum era.» [27]. Quantum computing promises
to revolutionize program computation compared to classical
computers [22], and offering an great polynomial speedup
for certain problems[4, 23], and eventually achieving the so-
called quantum supremacy [6]. For this reason, all major
software companies, like IBM and Google, are currently in-
vesting hundreds of millions of dollars every year in quantum
computing technologies1, such as quantum programming
languages, toolkits, and hardware.

While there have already been several promising appli-
cations of quantum programming in the fields of machine
learning [8], optimization [15], cryptography [20], and chem-
istry [28], the development of large-scale quantum software
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seems to be still far from being a reality. In this respect, re-
searchers [21, 25–27, 30] advocated the need for a new scien-
tific discipline, the quantum software engineering(QSE) [30],
which should allow programmers to develop quantum pro-
grams with the same confidence as classical programs by
extending SE into the quantum domain.

Recognizing the effort of the research community, we no-
ticed lack of empirical investigations to provide a complete
view of the current state of the practice on QSE. In particular,
we do not know how quantum programming is currently be-
ing used, which is critical to better understand the challenges
faced by quantum developers and steer the future research.

To take a step in this direction, we propose an empirical
study in which we mined all the GitHub repositories that
employ the three most widely used quantum programming
frameworks, i.e., Qiskit [5], Cirq [11], and Q♯ [2], and con-
ducted a content analysis sessions [19] to elicit a taxonomy
of tasks supported by quantum technologies nowadays.

During the first International Workshop on Quantum Soft-
ware Engineering, researchers and practitioners have pro-
posed a manifesto for quantum software engineering, known
as the ”Talavera Manifesto’ [26].- which defines the set of fun-
damental principles of this new discipline. Some of these prin-
ciples include agnosticism towards specific quantum technolo-
gies and coexistence of classical and quantum programming.
Since then, several studies [7, 9, 12, 14, 21, 24, 25, 27, 31, 32]
have been presented discussing challenges and potential direc-
tion in QSE research under various perspectives. The main po-
tential research areas involve artifact modeling [7, 12, 14, 24],
definition of software processes and methodologies for quan-
tum programming [27], and quality issues [9, 31, 32].

2 APPROACH AND UNIQUENESS
The main goal of this preliminary study is to investigate the
current usage of quantum programming technologies, with
the purpose of understanding where the QSE research could
bring benefits to the developers’ community. The research
question we aimed to answer was:

RQ. To what extent and for what kind of tasks are quantum
programming frameworks being used?

To answer it, we mined the open-source repositories hosted
on GitHub which rely on quantum programming frameworks.
We took into consideration only Qiskit, Cirq, and Q♯ since
they are widely recognized as more mature than others [1, 3].
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Figure 1: Partition of the repository per class of usage.

Figure 2: Number of contributors per type of repository.

Using the GitHub REST API2, we looked for code snip-
pets that indicated the use of the technologies we were in-
terested in, namely ‘from qiskit import’ and ‘from cirq
import’, for Qiskit and Cirq respectively. Q♯, on the other
hand, is recognized by GitHub as a programming language,
and thus we looked for repositories using it as the primary lan-
guage. Doing so, we found a total of 731 unique repositories
(442 Qiskit, 217 Cirq, 72 Q♯).

We then employed Straussian Grounded Theory [10], to
correctly analyze the gathered data. The author (hereafter,
the main inspector) manually analyzed each repository consid-
ering the README file and the repository description, looking
for keywords that indicated the purpose of the repository,
e.g., “My first Quantum Application”, thus compiling the
first classification. Then, two other inspectors (external col-
laborators working in the same research group) validated the
initial labels and suggested how to improve them, e.g., by
splitting or merging them.

In a second phase, the labels were renamed considering
the feedback from the first step, thus grouping semantically
similar [16] or even identical labels. This process was repeated
until agreement over the labels,and achieving the theoretical
saturation [29], i.e., the point when inspecting the labels
offers no new insights.

Finally, the inspectors developed a taxonomy of the current
usage of quantum programming based on the classification
2PyGitHub: https://github.com/PyGithub/PyGithub

Table 1: Summary of the labels employed in the classification
of the mined repositories

Label Name Purpose

Exercise/Toy Repository containing toy projects or col-
lection of sample code.

Hackaton/Assignment Repository containing code developed for
a hackaton or a school assignment.

Library/Framework Repository containing code composing a
library or a framework.

Research Repository containing code belonging to a
paper or research appendix.

Teaching Repository containing code that comple-
ments a lecture or a textbook.

Tool Repository containing code for a tool.

Unknown Repository not classifiable by reading the
README or the Description

of the repositories. We also computed the agreement among
the inspectors in terms of Fleiss’ k [13], which resulted in a
high agreement score of 0.993.

3 RESULTS AND CONTRIBUTION
Table 1 reports taxonomy of the current usage of quantum
programming technologies, which is composed of six cat-
egories, representing the high-level purpose for which the
repository was created. Figure 1 summarizes the repositories
partitioned employing our taxonomy, whilst Figure 2 shows
the distribution of developers per kind of repository.

Since quantum programming is still in its infancy, the main
purpose of use is for exercise or personal study. The hosted
code aims to explore the features of quantum programming
and, in general, is not intended to become a real-world soft-
ware. However, as shown in Figure 2 only 548 developers
contribute to this kind of repositories, since most of these
repositories have only one contributor. The other main pur-
pose for which quantum programming is used is to develop
quantum libraries or frameworks, which represent the 16% of
the total repositories, and the second category for number of
contributors. This was reasonably expected since quantum
technologies currently under development are mostly open-
source, and domain-specific libraries are also emerging (e.g.,
for quantum machine learning). Repository used as online
appendices of research projects activities represent the 11%
of the considered repositories, although having the greatest
number of contributors. This result is in line with the fact
that quantum programming is still a neat field in the vast
plethora of computer science and physics research. The re-
maining cases (book appendices, blog posts, etc.) represent
only a small percentage (7%) over the total.

In this paper we have only scratched the surface of quantum
programming and QSE. Further research might involve a
direct survey of the developers aimed to understand the
challenges that thay face in conducting these tasks.
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