
An Empirical Study on the Current Adoption of Quantum
Programming
Manuel De Stefano∗

SeSa Lab - University of Salerno
Fisciano, Italy

madestefano@unisa.it

ABSTRACT
Quantum computing is no longer just a scientific curiosity;
it is rapidly evolving into a commercially viable technology
that has the potential to surpass the limitations of classical
computation. As a result of this transition, a new discipline
known as quantum software engineering has emerged, which
is needed to describe unique methodologies for developing
large-scale quantum applications. In the pursue of building
this new body of knowledge, we undertake a mining study
to elicit the purposes quantum programming is being used
for, and steer further research.
ACM Reference Format:
Manuel De Stefano. 2022. An Empirical Study on the Current
Adoption of Quantum Programming. In 44th International Confer-
ence on Software Engineering Companion (ICSE ’22 Companion),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3510454.3522679

1 INTRODUCTION AND MOTIVATION
The dream has come true [18]: several physicists and computer
scientists agree that quantum technology is right around the
corner [17, 18] and that the 21st century will be recalled
as the «quantum era.» [27]. Quantum computing promises
to revolutionize program computation compared to classical
computers [22], and offering an great polynomial speedup
for certain problems[4, 23], and eventually achieving the so-
called quantum supremacy [6]. For this reason, all major
software companies, like IBM and Google, are currently in-
vesting hundreds of millions of dollars every year in quantum
computing technologies1, such as quantum programming
languages, toolkits, and hardware.

While there have already been several promising appli-
cations of quantum programming in the fields of machine
learning [8], optimization [15], cryptography [20], and chem-
istry [28], the development of large-scale quantum software
∗Advisors: Andrea De Lucia, Fabio Palomba
1Boston Consulting Group report: shorturl.at/mINWY

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3522679

seems to be still far from being a reality. In this respect, re-
searchers [21, 25–27, 30] advocated the need for a new scien-
tific discipline, the quantum software engineering(QSE) [30],
which should allow programmers to develop quantum pro-
grams with the same confidence as classical programs by
extending SE into the quantum domain.

Recognizing the effort of the research community, we no-
ticed lack of empirical investigations to provide a complete
view of the current state of the practice on QSE. In particular,
we do not know how quantum programming is currently be-
ing used, which is critical to better understand the challenges
faced by quantum developers and steer the future research.

To take a step in this direction, we propose an empirical
study in which we mined all the GitHub repositories that
employ the three most widely used quantum programming
frameworks, i.e., Qiskit [5], Cirq [11], and Q♯ [2], and con-
ducted a content analysis sessions [19] to elicit a taxonomy
of tasks supported by quantum technologies nowadays.

During the first International Workshop on Quantum Soft-
ware Engineering, researchers and practitioners have pro-
posed a manifesto for quantum software engineering, known
as the ”Talavera Manifesto’ [26].- which defines the set of fun-
damental principles of this new discipline. Some of these prin-
ciples include agnosticism towards specific quantum technolo-
gies and coexistence of classical and quantum programming.
Since then, several studies [7, 9, 12, 14, 21, 24, 25, 27, 31, 32]
have been presented discussing challenges and potential direc-
tion in QSE research under various perspectives. The main po-
tential research areas involve artifact modeling [7, 12, 14, 24],
definition of software processes and methodologies for quan-
tum programming [27], and quality issues [9, 31, 32].

2 APPROACH AND UNIQUENESS
The main goal of this preliminary study is to investigate the
current usage of quantum programming technologies, with
the purpose of understanding where the QSE research could
bring benefits to the developers’ community. The research
question we aimed to answer was:

RQ. To what extent and for what kind of tasks are quantum
programming frameworks being used?

To answer it, we mined the open-source repositories hosted
on GitHub which rely on quantum programming frameworks.
We took into consideration only Qiskit, Cirq, and Q♯ since
they are widely recognized as more mature than others [1, 3].

https://doi.org/10.1145/3510454.3522679
shorturl.at/mINWY
https://doi.org/10.1145/3510454.3522679

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA De Stefano et al.

Figure 1: Partition of the repository per class of usage.

Figure 2: Number of contributors per type of repository.

Using the GitHub REST API2, we looked for code snip-
pets that indicated the use of the technologies we were in-
terested in, namely ‘from qiskit import’ and ‘from cirq
import’, for Qiskit and Cirq respectively. Q♯, on the other
hand, is recognized by GitHub as a programming language,
and thus we looked for repositories using it as the primary lan-
guage. Doing so, we found a total of 731 unique repositories
(442 Qiskit, 217 Cirq, 72 Q♯).

We then employed Straussian Grounded Theory [10], to
correctly analyze the gathered data. The author (hereafter,
the main inspector) manually analyzed each repository consid-
ering the README file and the repository description, looking
for keywords that indicated the purpose of the repository,
e.g., “My first Quantum Application”, thus compiling the
first classification. Then, two other inspectors (external col-
laborators working in the same research group) validated the
initial labels and suggested how to improve them, e.g., by
splitting or merging them.

In a second phase, the labels were renamed considering
the feedback from the first step, thus grouping semantically
similar [16] or even identical labels. This process was repeated
until agreement over the labels,and achieving the theoretical
saturation [29], i.e., the point when inspecting the labels
offers no new insights.

Finally, the inspectors developed a taxonomy of the current
usage of quantum programming based on the classification
2PyGitHub: https://github.com/PyGithub/PyGithub

Table 1: Summary of the labels employed in the classification
of the mined repositories

Label Name Purpose

Exercise/Toy Repository containing toy projects or col-
lection of sample code.

Hackaton/Assignment Repository containing code developed for
a hackaton or a school assignment.

Library/Framework Repository containing code composing a
library or a framework.

Research Repository containing code belonging to a
paper or research appendix.

Teaching Repository containing code that comple-
ments a lecture or a textbook.

Tool Repository containing code for a tool.

Unknown Repository not classifiable by reading the
README or the Description

of the repositories. We also computed the agreement among
the inspectors in terms of Fleiss’ k [13], which resulted in a
high agreement score of 0.993.

3 RESULTS AND CONTRIBUTION
Table 1 reports taxonomy of the current usage of quantum
programming technologies, which is composed of six cat-
egories, representing the high-level purpose for which the
repository was created. Figure 1 summarizes the repositories
partitioned employing our taxonomy, whilst Figure 2 shows
the distribution of developers per kind of repository.

Since quantum programming is still in its infancy, the main
purpose of use is for exercise or personal study. The hosted
code aims to explore the features of quantum programming
and, in general, is not intended to become a real-world soft-
ware. However, as shown in Figure 2 only 548 developers
contribute to this kind of repositories, since most of these
repositories have only one contributor. The other main pur-
pose for which quantum programming is used is to develop
quantum libraries or frameworks, which represent the 16% of
the total repositories, and the second category for number of
contributors. This was reasonably expected since quantum
technologies currently under development are mostly open-
source, and domain-specific libraries are also emerging (e.g.,
for quantum machine learning). Repository used as online
appendices of research projects activities represent the 11%
of the considered repositories, although having the greatest
number of contributors. This result is in line with the fact
that quantum programming is still a neat field in the vast
plethora of computer science and physics research. The re-
maining cases (book appendices, blog posts, etc.) represent
only a small percentage (7%) over the total.

In this paper we have only scratched the surface of quantum
programming and QSE. Further research might involve a
direct survey of the developers aimed to understand the
challenges that thay face in conducting these tasks.

https://github.com/PyGithub/PyGithub

An Empirical Study on the Current Adoption of Quantum Programming ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] 2021. Open-Source Quantum Software Projects. https://

quantumcomputingreport.com/tools/. Accessed: 2021-06-05.
[2] 2021. Q#: A Quantum Programming Lnaguage. https://qsharp.

community. Accessed: 2021-09-21.
[3] 2021. What To Look For In A Quantum Machine Learning

Framework. https://bit.ly/2ZkC0jr. Accessed: 2021-06-05.
[4] Scott Aaronson. 2005. Guest column: NP-complete problems and

physical reality. ACM Sigact News 36, 1 (2005), 30–52.
[5] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos,

Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose
Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-
Fu Chen, et al. 2019. Qiskit: An open-source framework for
quantum computing. Accessed on: Mar 16 (2019).

[6] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C
Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fer-
nando GSL Brandao, David A Buell, et al. 2019. Quantum
supremacy using a programmable superconducting processor. Na-
ture 574, 7779 (2019), 505–510.

[7] Luis S Barbosa. 2020. Software engineering for’quantum ad-
vantage’. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops. 427–429.

[8] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Reben-
trost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum machine
learning. Nature 549, 7671 (2017), 195–202.

[9] José Campos and André Souto. 2021. QBugs: A Collection of
Reproducible Bugs in Quantum Algorithms and a Supporting
Infrastructure to Enable Controlled Quantum Software Testing
and Debugging Experiments. arXiv preprint arXiv:2103.16968
(2021).

[10] Juliet M Corbin and Anselm Strauss. 1990. Grounded theory
research: Procedures, canons, and evaluative criteria. Qualitative
sociology 13, 1 (1990), 3–21.

[11] Cirq Developers. 2021. Cirq. https://doi.org/10.5281/zenodo.
4750446 See full list of authors on Github: https://github
.com/quantumlib/Cirq/graphs/contributors.

[12] Iaakov Exman and Alon Tsalik Shmilovich. 2021. Quantum Soft-
ware Models: The Density Matrix for Classical and Quantum Soft-
ware Systems Design. arXiv preprint arXiv:2103.13755 (2021).

[13] Joseph L Fleiss. 1971. Measuring nominal scale agreement among
many raters. Psychological bulletin 76, 5 (1971), 378.

[14] Felix Gemeinhardt, Antonio Garmendia, and Manuel Wimmer.
2021. Towards Model-Driven Quantum Software Engineering. In
Second International Workshop on Quantum Software Engineer-
ing (Q-SE 2021) co-located with ICSE 2021.

[15] Gian Giacomo Guerreschi and Mikhail Smelyanskiy. 2017. Practi-
cal optimization for hybrid quantum-classical algorithms. arXiv
preprint arXiv:1701.01450 (2017).

[16] Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Mont-
main. 2015. Semantic similarity from natural language and ontol-
ogy analysis. Synthesis Lectures on Human Language Technolo-
gies 8, 1 (2015), 1–254.

[17] Tony Hoare and Robin Milner. 2005. Grand challenges for com-
puting research. Comput. J. 48, 1 (2005), 49–52.

[18] Will Knight. 2018. Serious quantum computers are finally here.
What are we going to do with them. MIT Technology Review.
Retrieved on October 30 (2018), 2018.

[19] William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal
principles of design, revised and updated: 125 ways to enhance
usability, influence perception, increase appeal, make better
design decisions, and teach through design. Rockport Pub.

[20] Logan O Mailloux, Charlton D Lewis II, Casey Riggs, and
Michael R Grimaila. 2016. Post-quantum cryptography: what
advancements in quantum computing mean for it professionals.
IT Professional 18, 5 (2016), 42–47.

[21] Enrique Moguel, Javier Berrocal, José García-Alonso, and
Juan Manuel Murillo. 2020. A Roadmap for Quantum Software
Engineering: Applying the Lessons Learned from the Classics.. In
Q-SET@ QCE. 5–13.

[22] Leonie Mueck. 2017. Quantum software. Nature 549, 7671 (2017),
171–171.

[23] Masanori Ohya and Igor V Volovich. 2008. New quantum algo-
rithm for studying NP-complete problems. In Selected Papers Of
M Ohya. World Scientific, 83–90.

[24] Ricardo Pérez-Castillo, Luis Jiménez-Navajas, and Mario Piattini.
2021. Modelling Quantum Circuits with UML. arXiv preprint
arXiv:2103.16169 (2021).

[25] Mario Piattini, Guido Peterssen, and Ricardo Pérez-Castillo. 2020.
Quantum Computing: A New Software Engineering Golden Age.
ACM SIGSOFT Software Engineering Notes 45, 3 (2020), 12–14.

[26] Mario Piattini, Guido Peterssen, Ricardo Pérez-Castillo, Jose Luis
Hevia, Manuel A Serrano, Guillermo Hernández, Ignacio Gar-
cía Rodríguez de Guzmán, Claudio Andrés Paradela, Macario Polo,
Ezequiel Murina, et al. 2020. The Talavera Manifesto for Quan-
tum Software Engineering and Programming.. In QANSWER.
1–5.

[27] Mario Piattini, Manuel Serrano, Ricardo Perez-Castillo, Guido
Petersen, and Jose Luis Hevia. 2021. Toward a quantum software
engineering. IT Professional 23, 1 (2021), 62–66.

[28] Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker,
and Matthias Troyer. 2017. Elucidating reaction mechanisms on
quantum computers. Proceedings of the National Academy of
Sciences 114, 29 (2017), 7555–7560.

[29] Janiece L Walker. 2012. Research column. The Use of Saturation
in Qualitative Research. Canadian journal of cardiovascular
nursing 22, 2 (2012).

[30] Jianjun Zhao. 2020. Quantum software engineering: Landscapes
and horizons. arXiv preprint arXiv:2007.07047 (2020).

[31] Jianjun Zhao. 2021. Some Size and Structure Metrics for Quantum
Software. arXiv preprint arXiv:2103.08815 (2021).

[32] Pengzhan Zhao, Jianjun Zhao, and Lei Ma. 2021. Identi-
fying Bug Patterns in Quantum Programs. arXiv preprint
arXiv:2103.09069 (2021).

https://quantumcomputingreport.com/tools/
https://quantumcomputingreport.com/tools/
https://qsharp.community
https://qsharp.community
https://bit.ly/2ZkC0jr
https://doi.org/10.5281/zenodo.4750446
https://doi.org/10.5281/zenodo.4750446

	Abstract
	1 Introduction and Motivation
	2 Approach and Uniqueness
	3 Results and Contribution
	References

