
Impacts of Software Community Patterns on Process and Product:
An Empirical Study

Manuel De Stefano,1 Emanuele Iannone,1 Fabiano Pecorelli,1 Damian Andrew Tamburri2

1SeSa Lab, University of Salerno (It) — 2JADE Lab, Eindhoven University of Technology - Jheronimus Academy of Data Science (NL)
madestefano@unisa.it, eiannone@unisa.it, fpecorelli@unisa.it, d.a.tamburri@tue.nl

Abstract

Software engineering projects are now more than ever a community effort. In the recent past, researchers have shown that
their success not only depends on source code quality, but also on other aspects like the balance of power distance, culture,
and global engineering practices, and more. In such a scenario, understanding the characteristics of the community
around a project and foresee possible problems may be the key to develop successful systems. In this paper, we focus
on this research problem and propose an exploratory study on the relation between community patterns, i.e., recurrent
mixes of organizational or social structure types, and aspects related to the quality of software products and processes
by mining open-source software repositories hosted on GitHub. We first exploit association rule mining to discover
frequent relations between community pattern and community smells, i.e., sub-optimal patterns across the organizational
structure of a software development community that may be precursors of some form of social debt. Further on, we use
statistical analyses to understand their impact on software maintainability and on the community engagement, in terms
of contributions and issues. Our findings show that different organizational patterns are connected to different forms
of socio-technical problems; further on, specific combinations are set in equally specific contextual conditions. Findings
support two possible conclusions: (1) practitioners should put in place specific preventive actions aimed at avoiding
the emergence of community smells and (2) such actions should be drawn according to the contextual conditions of the
organization and the project.

Keywords: Community patterns, Community smells, Empirical studies.

1. Introduction

Software is increasingly being developed by globally-
distributed communities having complex social networks
of software development [76]. Over the last few years, re-
searchers have been investigating the impact of such com-
plex social networks on the sustainability of open- and
closed-source communities as well as source code quality,
finding them to be a highly relevant factor for the success
of software systems [69, 10, 46, 61, 78]. As an example,
Kwan et al. [46] showed that the alignment between so-
cial and technical structure of the community, i.e., the
so-called socio-technical congruence [11], has an effect on
the build success, while Palomba et al. [61] found that
community-related factors can increase the criticality of
source code quality issues. As such, studying software
communities does not only represent a way to understand
and learn how to reduce social debt, i.e., the unforeseen
cost given by a wrong management of the communica-
tion/coordination between developers [71], but also to pos-
sibly improve the overall quality of the technical products
being developed [46, 61].

In recent work, Tamburri et al. [76] elicited a set
of community patterns—common governance mechanisms
adopted by open-source practitioners to manage the

community—showing that each pattern has its own char-
acteristics and peculiarities [13]. On the one hand, Tam-
burri et al. [69, 78] also explored the dark-side of software
communities and described a set of sub-optimal organiza-
tional structures that lead to the emergence of both social
and technical debt, which have been named as community
smells. On the other hand, researchers have been study-
ing community patterns and smells in isolation, for in-
stance by assessing how community smells manifest them-
selves and can be mitigated [15, 14]. What is more, re-
search is scarce in understanding the influence between
such patterns, smells, and the software processes and prod-
ucts around them. An improved understanding of such
relations is important to reveal whether and to what ex-
tent certain governance mechanisms are more incline to
which improvement or pejoration over the software com-
munity’s organizational conditions (e.g., whether they in-
cite the emergence of community smells). Furthermore,
gaining such understanding would allow researchers to fur-
ther investigate the problem, possibly proposing monitor-
ing and/or remediation strategies.

In our previous work [24], we shed light on the afore-
mentioned relations by studying how community patterns
relate to community smells through association rule min-

Preprint submitted to Elsevier October 4, 2021

Table 1: Overview of the software project communities considered in our study. The domain taxonomy is tailed from literature [9]. Projects
marked with an asterisk (*) were only available for the first of three parts of the study (Section 4). The reported numbers refer up to 30th
April 2017.

Name #commits #contributors Main Lang. Domain

Android* 314790 759 Java Library
Arduino 6596 262 Java Eletronics prototype platform
BoilerPlate* 469 48 JS Web libraries and frameworks
Bootstrap 16665 1064 JS Web libraries and frameworks
Boto 7282 682 Python Web libraries and frameworks
Bundler 39236 761 Ruby Web libraries and frameworks
Cloud9 9160 82 JS Application Software
Composer 7409 774 PHP Software Tools
Cucumber 600 23 Java Software Tools
Ember.Js 17594 868 JS Web libraries and frameworks
Gollum 1970 186 Ruby Non-Web libraries and frameworks
Hammer.Js 1282 101 JS Web libraries and frameworks
Hawkthorne 5568 82 Lua Software Tools
Heroku* 353 48 Ruby Software Tools
Modernizr 2412 260 JS Non-Web libraries and frameworks
Mongoid 6932 497 Ruby Non-Web libraries and frameworks
Monodroid* 1462 61 PHP Non-Web libraries and frameworks
Netty 13308 419 Java Software Tools
PDF.Js 9735 307 JS Web libraries and frameworks
Refinery 14003 542 Ruby Software Tools
Salt 86637 2599 Python Software Tools
Scikit-Learn 23110 1146 Python Non-Web libraries and frameworks
Scrapy 7063 298 Python Non-Web libraries and frameworks
SimpleCV 2649 108 Python Non-Web libraries and frameworks
SocketRocket 537 81 Objective-C Non-Web libraries and frameworks

ing. By gathering data from 25 open-source communities,
we exploited association rule learning [1] with the aim of
discovering frequent co-occurrences between the two phe-
nomena of interest, and then reason on the rationale be-
hind the observed relations. Key findings of our study
show that different community patterns relate to differ-
ent smells, highlighting that the governance mechanisms
which are put in place may potentially have consequences
in terms of social debt.

In this paper, we expand exploratively on the afore-
mentioned work including how common software pro-
cess and product characteristics relate to community
patterns. We analyze the chosen systems relying on
various third-party tools—namely Yoshi and Code-
Face4Smells (that we have already employed in our pre-
vious study) to detect community patterns and smells, re-
spectively, while CLOC, Multimetrics and Grimoire-
Lab for extracting product and process metrics. To ac-
count for an exploratory perspective, we adopt a statistical
hypothesis-testing approach with the goal of pinpointing
the relations (if any) among community patterns, software
processes, and product metrics in our sample. We find that
specific community patterns relate to equally specific or-
ganisational conditions; at the same time, we reveal that
the current understanding over software community struc-
tures and their implicit/explicit adoption of community
patterns is still limited and deserves further attention.

Our results have implications for both researchers and
practitioners. Based on our findings, the former can fur-
ther analyse the dynamics behind community patterns and
how various known and established governance mecha-
nisms lead to socio-technical issues or whether novel mech-
anisms are required for specific operational conditions.

The latter, instead, can exploit our results to understand
what are the risks associated with the community pat-
tern(s) currently in place in their projects and take pre-
ventive actions for business continuity perhaps focusing on
working out the aforementioned novel governance patterns
and practices.

To sum up, the contributions of this paper are:

1. A list of association rules between community pat-
terns and community smells to see how they relate
each other.

2. An empirical analysis on how community patterns
affect the product quality.

3. An empirical analysis on how community patterns
affect the community engagement in open-source
projects.

4. A replication package [23] containing all the materi-
als to reproduce and extend our study.

Structure of the paper. Section 2 discusses the liter-
ature related to community patterns and smells. Section
3 presents the research questions driving our study and
the dataset exploited, while Section 4 and 5 describe the
methodological detail and results of the research questions.
In Section 6 we further discuss the main findings and their
implications. The potential limitations of the study are re-
ported in Section 7. Finally, Section 8 concludes the paper
and presents our future research agenda.

2. Related Work

The presence of community smells reflects both the
health of the organization as well as the quality of the

software produced (and also its life cycle) [62]. So, in the
context of our work, we had to deal with both software en-
gineering and organizational research. In this section, we
outline related work in (i) establishing, measuring, track-
ing or otherwise improving the health or status of software
engineering communities and (ii) empirically assessing the
effects of community smells on social and technical aspects
of source code.

Software communities health. On the software engineer-
ing side of the topic spectrum, several works provided
fundamental insights into the problem, including the
widely known socio-technical congruence [10] research,
but without ever offering a theoretically- and empirically-
established quality model. For instance, the research
community concentrated on establishing the link between
several organizational structure qualities (e.g., hidden-
subcontractors in the organizational structure [4, 6],
awareness [8, 58], distance and coordination [36, 32], etc.)
with respect to software quality [77]. Nagappan et al. [51]
found empirical evidence of the existence of a relation be-
tween the development process and the product failure-
proneness. Later on, Meneely and Williams [49] conducted
an online survey to study the relationships between de-
veloper networks and SNA metrics. Their results have
shown that developer networks represent the real-world
socio-technical aspects described by those metrics. Nordio
et al. [54] studied the impacts of distributed networks on
the quality of the development process from the communi-
cation perspective. They conducted an experiment com-
paring the amount of communication in two-location and
three-location projects showing that there is no statistical
significant difference between the two network configura-
tions. Jansen [40] proposed a framework for open-source
ecosystems health, based on the study of the literature; in
particular, the proposed framework was focused on param-
eters for ecosystem health without considering organiza-
tional structures or anti-patterns emerging thereto. Simi-
larly, the work by Crowston and Howison [21] offered anec-
dotal evidence of the need for empirically-proven quality
models for open-source communities. They argued that
informal open-source communities are healthier since they
are more engaged. Our work could be seen as a second
step of their proposals, since we propose an empirically-
grounded catalog of strategies that practitioners can use
to avoid running into specific community smells.

At the other end of the spectrum, organization and
social-network researchers proposed a plethora of orga-
nizational anti-patterns [63, 68], as well as (a few) best
practices to address them [39, 80], with even fewer ex-
ceptions for open-source software communities [72]. For
example, Giatsidis et al. [30] elaborated on collaboration
structures with high-edge social network analysis. They
concluded that organizationally-specific k-structured net-
works are more efficient than others, so there exists an
organizational structure which best fits a pre-specified pur-
pose. Similarly, the same authors investigated on the

impact of communication, collaboration, and cooperation
over community structure qualities [29]. Insights from
both papers would offer a valuable basis for argument over
organizational structure research in software engineering.
However, in our work we face the problem asking practi-
tioners to share us their knowledge and experience about
sub-optimal situations; this might lead to achieving more
practical insights.

Research on community smells. In the last years, com-
munity smells have begun to receive particular atten-
tion [61, 78, 5]; one of the motivations resides in the de-
velopment of the tool able to detect them called Code-
Face by Joblin et al. [42]. Indeed, the aforementioned
tool was first augmented with heuristics capable to detect
community smells [78] and then adopted to investigate the
impact of community smells over code smells [61]. In the
first place, Tamburri et al. [78] assessed the detection ca-
pabilities of the proposed augmented tool, named Code-
Face4Smells by surveying practitioners, who confirmed
that the results given by the tool are accurate and mean-
ingful. Also, the authors investigated (i) the diffuseness of
four community smells in open-source and (ii) their rela-
tion with known socio-technical factors: their results pro-
vided evidence that smells are highly diffused and can be
foreseen by taking certain socio-technical indicators under
control. At the same time, Palomba et al. [61] discovered
that community smells represent top factors preventing
from refactoring; moreover, they are key features when it
comes to predicting the severity of specific code smells.
Similar works have concentrated on establishing the im-
pact of community smells on other dimensions of software
engineering (e.g., architecture debt [47] and organization
structure types [77]).

On another note, Catolino et al. [15] analysed that in
certain cases the emergence of community smells may be
potentially reduced by increasing gender diversity. In their
extended work [12], however, they found that practition-
ers do not perceive gender diversity and the presence of
women in software teams as relevant factors to avoid com-
munity smells, while they believe that other aspects, like
developer’s experience or team size, may make a commu-
nity more prone to be affected by smells. Finally, more
recently, Catolino et al. [16] conducted an empirical in-
vestigation on the prominence of four community smells
in open source projects and on the methods adopted to
refactor them. Results revealed that community smells
manifest in software projects with high frequency and the
evidence that developers adopt specific practices to refac-
tor them.

Our work is complementary to those discussed above,
as it does not focus on the emergence of community smells
or their impact, but rather on how practitioners deal with
them and, particularly, on the strategies employed in prac-
tice to get rid of community smells. Nevertheless, it is
important to point out that Tamburri et al. [78] have as-
sessed the diffuseness of community smells in open-source

projects; our analysis of the perceived relevance of commu-
nity smells can nicely triangulate the findings by Tamburri
et al. [78] and potentially show preliminary insights into
the awareness of practitioners with respect to community
smells.

3. Research Questions and Context Selection

The goal of this empirical study is to investigate the
relations of community patterns with community smells
and their effect on both a software system’s maintainabil-
ity and community engagement, with the purpose of un-
derstanding whether the structural organization of a com-
munity may potentially affect other community-, product-
or process-related factors, from the perspective of both re-
searchers and practitioners, who are interested in discov-
ering the potential impact that a community structure has
on the entire project.

Figure 1: Graphical representation of the applied methodology for
each RQ. In the upper part it is shown the repository mining pro-
cess with the used tools (Yoshi, CodeFace4Smells, etc.) and the
association rule mining between community patterns and smell, to
answer RQ1. In the middle and bottom portion it is represented how
the extracted metrics from the same repositories were correlated with
community patterns, to answer RQ2 and RQ3.

Our study uses the presence of community patterns as
the cause construct and see which are their effects on some
project aspects that we suspect may be influenced. On the
one hand, given its exploratory nature, our study therefore
makes use of metrics and constructs we conjecture may be
influenced by the community dimensions under investiga-
tion. On the other hand, in this section we provide an

overview of the research questions and conjectures driv-
ing our study and present some relevant information on
the dataset employed to address them. It should be noted
that, however, the selection of the constructs to examine
reflects the exploratory nature of our study; at the same
time, we recognise the need for future work invested in
coherently and systematically identify and analyse addi-
tional metrics from both the process and product front.

3.1. Research Questions
Starting from the general goal, we structured our study

around three main research questions (RQs). The first
investigates the relation between community patterns and
community smells to understand whether certain smells
tend to occur more often under specific community types.

RQ1 What is the relation between community patterns
and community smells?

Once having assessed the links between community
patterns and smells, we kept going forward investigating
the potential impact of the patterns on the maintainabil-
ity.

RQ2 To what extent do community patterns affect the
maintainability of a system?

Finally, we studied the relations between community
patterns and some aspects related to the engagement of the
communities under analysis. Specifically, we considered
their impact on the number of commits and the number
of created issues.

RQ3 To what extent do community patterns affect the
engagement of a community?

Figure 1 reports the methodology adopted to answer
our three RQs. To answer RQ1, we first selected a set
of 25 open-source software systems, then we extracted the
patterns and smells of their communities, and finally we
run the aPriori algorithm [2] to mine associations be-
tween them. After that, to answer RQ2 and RQ3, from
the same set of projects, we extracted several product and
process related metrics, and we used them to build a Gen-
eralized Linear Model (GLM) [53] to find possible relations
between community patterns and (i) the system’s main-
tainability, (ii) the community engagement in terms of the
number of commits and number of created issues.

3.2. Context of the Study
Projects. We considered 25 open-source software com-
munities coming from the GitHub software community
management platform, sampled according to guidelines

from the state of the art [25] and refined applying best-
practice sampling criteria [44]. In particular, from the ini-
tial list of 81,327,803 open-source projects available, we
first excluded systems having less than 10 contributors:
such a filter was required to gather projects built by an
actual community of developers. Then, we excluded sys-
tems with less than 100 commits—since they represent
the most basic organisational manifestation of any soft-
ware community—so that we could rely on a sufficient
amount of information to study how developers collabo-
rate with each other (this is required to accurately detect
community smells, as explained later in the paper). Ap-
plying these filters, we came up with a total of 44,387,266
projects. Starting from this very large number of projects,
we set out additional filters to restrict the size of the sam-
ple: we considered projects having at least (i) 1000 stars,
(ii) 500 commits and (iii) 50 contributors. Applying these
additional filters we came up with 3558 projects. Due
to computational constraints, we randomly selected 25 of
them, which we used to run the previous study (i.e.,RQ1);
however, during the investigations of RQ2 andRQ3, 4 out
of 25 projects’ GitHub repositories were removed by their
authors, preventing us to extract the product and process
metrics needed to answer these two research questions. We
decided not to replace these projects and to continue the
study restricting to the remaining 21.

Table 1 summarizes the main characteristics of the ex-
tracted software projects in terms of (i) size, measured as
the number of commits performed over their history, (ii)
contributors, (iii) main programming language, and (iv)
application domain, according to the taxonomy proposed
by Borges et al. [9].

Community Patterns. In the following we report the
list of types appearing in each community pattern emerged
in our study. On the one hand, each type is accompa-
nied by a brief description but reflects one of four meta-
types [74], namely: (a) communities, which are social con-
structs made for sharing (e.g., of values, norms, practices,
etc.); (b) networks, which suggest the presence of digital or
technological support tools to account for (physical, cul-
tural or otherwise) distance of some kind; (c) groups, which
are tightly knit sets of people or agencies that pursue an
organizational goal; (d) teams, which emerge as specifi-
cally assembled sets of people with a diversified and com-
plementary set of skills. On the other hand, community
types manifest themselves into a pattern, made up of two
or more types. In the scope of this study we start explo-
ratively focusing on community patterns as manifestations
of multiple types at once but, to give concrete inputs to
the research and practitioner communities, also discuss the
influence of each individual type over the observed charac-
teristics. More concretely, types part of our study context
are reported below:

– Informal Communities (IC). ICs reflect sets of peo-
ple part of a highly-dispersed organisation, with a com-
mon interest, often closely dependent on their practice.

They interact informally across unbound distances, fre-
quently over a common history or culture (e.g. shared
ideas, experience, etc). The main difference they have
with all communities (with the exception of NoPs) is
that their localization is necessarily dispersed (e.g., con-
trarily to INs where networked interactions can also be
in the same timezone or physical location) so that the
community can reach a wider audience [74]. Loosely-
affiliated political movements (such as Greenpeace) are
examples of ICs: their members disseminate their vision
(based on a common idea, which is the goal of the IC).

– Formal Networks (FN). FNs rigorously select and
prescribe memberships, which are created and acknowl-
edged by FN management. The direction is carried out
according to corporate strategy and its mission is to fol-
low this strategy [74]. An example in software engineer-
ing is the OMG (Object Management Group): it is a for-
mal network since the interaction dynamics and status
of the members (i.e., the organizations which are part of
OMG) are formal; also, the meeting participants (i.e.,
the people that corporations send as representatives) are
acknowledged formally by their corporate sponsors.

– Formal Groups (FG). FGs are comprised of people
which are explicitly grouped by corporations to act on
(or by means of) them (e.g. governing employees or
ease their job or practice by grouping them in areas of
interest). Each group has a single organizational goal,
called mission (governing boards are groups of execu-
tives whose mission is to devise and apply governance
practices successfully). In comparison to Formal Net-
works, they seldom rely on networking technologies, on
the contrary, they are local in nature and are less for-
mal since there are no explicit governance protocols em-
ployed other than the grouping mechanism and the com-
mon goal. Examples of formal groups in software engi-
neering are software taskforces, e.g. IEEE Open-Source
Software Task Force.1

– Informal Networks (IN). INs are loose networks of
ties between individuals that happen to come informally
in contact in the same context. The primary indicator
is the high strength of informal member ties. Finally,
IN does not use governance practices [20]. An example
in academia is the informal and loosely coupled set of
research communities around a single topic (e.g., com-
puter science) is a world-wide informal network.

– Networks of Practice (NoP). A NoP is a networked
system of communication and collaboration that con-
nects CoPs (which are localized). In principle, any-
one can join it without the selection of candidates (e.g.
Open-Source forges are an instance of NoP). NoPs have
the highest geodispersion. An unspoken requirement is

1http://ewh.ieee.org/cmte/psace/CAMS_taskforce/index.htm

http://ewh.ieee.org/cmte/psace/CAMS_taskforce/index.htm

expected IT literacy [64]. For example, previous liter-
ature [7] discusses Socio-technical Networks in software
engineering using the exact terms with which NoPs are
defined in the literature.

– Workgroups (WG). WGs are made of technical ex-
perts whose goals span a specific business area. WGs
are always accompanied by a number of organizational
sponsors and are expected to generate tangible assets
and benefits (i.e., Return-On-Investment). Fundamen-
tal attributes of WGs are collocation and the highest co-
hesion of their members (e.g., long-time collaborators).
For example, in software engineering, the IFIP WG 2.10
on software architecture2 is obviously a WG, since its ef-
fort is planned and steady, with highly cohesive action
of its members, as well as focused on pursuing the ben-
efits of certain organizational sponsors (e.g. UNESCO
for IFIP).

– Communities of Practice (CoP). A CoP consists of
collocated groups of people who share a concern, a set of
problems, or a passion about a practice. Interactions are
frequent, face-to-face, collaborative (to help each other),
and constructive (to increase mutual knowledge). This
set of social processes and conditions is called situated-
ness [27]. An example is the SRII community3 which
gathers multiple CoPs (corporate and academic) into a
single one, meeting physically to informally exchange
best practices in services science.

– Project-Teams (PT). PTs are fixed-term, problem-
specific aggregations of people with complementary
skills who work together to achieve a common purpose
for which they are accountable. They are enforced by
their organization and follow specific strategies or orga-
nizational guidelines (e.g. time-to-market, effectiveness,
low-cost, etc.). Their final goal is the delivery of a prod-
uct or service [74].

– Social Networks (SN). SNs represent the emergent
network of social ties spontaneously arising between in-
dividuals who share, either willingly or not, a practice or
common interest. Conversely, an unstructured network
is (often by-design) not constrained by any design or
structural tie (e.g., a common social practice) [82]. SNs
act as a gateway to communicating communities [20].

All of them come from existing literature and include
various forms of organizational structures. The choice of
focusing on these types comes from the availability of an
automated tool enabling their detection, i.e., Yoshi [76].
In particular, this tool implements a two-step approach:
given a Github repository, it mines commit history, is-
sue tracker, and contributor’s data in order to compute
metrics that characterize the structure of the community.

2http://www.softwarearchitectureportal.org/
3www.thesrii.org

For example, Yoshi computes the overall engagement of
developers, i.e., the amount of time that the contributors
actively spend in community-related actions, or the level of
formality of the decision making process exercised or self-
imposed on the community. In the second step, the tool
implements a validated decision-tree that—on the basis of
the measurements previously computed—is able to clas-
sify the organizational pattern exhibited by a community,
intended as the set of community types matching the char-
acteristics that Yoshi observes (e.g., a formal or informal
group mixed with a working group, as matched to high for-
mality and collocation and high-cohesion of workers). It is
important to highlight that the performance of Yoshi has
been empirically assessed [76], showing an accuracy close
to 100%. As such, the tool represents the ideal way to
detect community patterns in our study.

From a practical point of view, each project commu-
nity complies to one or more community patterns, so the
best way to encode this aspect is by the means of multi-
ple boolean variables, one per each of the nine types de-
tected by Yoshi, indicating their presence (True) or ab-
sence (False). Since three of the patterns we considered—
namely, Community of Practice (CoP), Projects-Teams
(PT), and Social Networks (SN)—never occur in the se-
lected 25 communities, we decided to remove their vari-
ables due to their little use in the context of this study.
Thus, we make use of 6 different boolean variables. At
the same time, a newer version of the tool (available
online: https://github.com/maelstromdat/YOSHI) pro-
vides further validated typification facilities and allows
replication and further study of the materials in this paper.

Community Smells. As another crucial part of our
study context, community smells represent one of the
possible manifestations emerging in connection to specific
patterns. As such manifestations are established already
in software engineering literature (e.g., see Palomba et
al. [61]) we chose to omit their elaboration and refer the
reader to the background and related work section (see
Section 2).

4. RQ1 - On the Relation Between Community
Patterns and Community Smells

4.1. Research Methodology
Community smells are the “social” counterpart of the

well-known code smells affecting communities of develop-
ers. Just like code smells, they are indicators of the pres-
ence of social debt, and represent the result of accumulated
bad or sub-optimal decisions in terms of people and orga-
nizations [70]. In the context of our study, we focused on
some particular instances of smells:

– Black Cloud. This smell arises when the community
presents an information overload due to lack of struc-
tured communications or cooperation governance.

http://www.softwarearchitectureportal.org/
www.thesrii.org
https://github.com/maelstromdat/YOSHI

– Bottleneck. In this case, one member interposes her-
self into every formal interaction across two or more
sub-communities with little or no flexibility to introduce
other parallel channels.

– Organizational Silo. This smell appears when there
are “siloed” areas of the developer community that do
not communicate, except through one or two of their
respective members.

– Lone Wolf. Instances of this smell arise when the de-
veloper community has unsanctioned or defiant contrib-
utors who carry out their work with little consideration
of their peers, their decisions and/or communication.

The reasons of this choice are as follows. In the first
place, these specific smells have been shown by previous
research [72, 61, 56, 41, 37] to be (1) among the most
problematic community-related issues to deal with and
(2) a potential threat to the emergence of technical debt
and other nasty code-quality related phenomena [43, 78].
Secondly, these smells can be detected exploiting an auto-
mated tool named CodeFace4Smells [78]. This is a fork
of CodeFace [43], a tool originally designed to extract co-
ordination and communication graphs mapping the devel-
oper’s relations within a community. CodeFace4Smells
augments these graphs with detection rules able to identify
the four community smells taken into account. As an ex-
ample, the identification pattern for Lone Wolf is based
on the detection of development collaborations between
two community members that have intermittent commu-
nication counterparts or feature communication by means
of an external “intruder”, i.e., not involved in the collab-
oration. More specifically, the tool jointly uses (1) the
coordination and communication graphs, (2) the depen-
dency relations connecting these two graphs to discover an-
tipatterns reflecting the community smells, e.g., so-called
cliques [3] on the resulting graph which reflect organiza-
tional siloes.

Also for this tool, it is important to comment on its
accuracy. CodeFace4Smells has been empirically eval-
uated [78, 72] by means of surveys and/or semi-structured
interviews with both the original industrial and open-
source practitioners belonging to 60 communities. In par-
ticular, the authors of the tool showed practitioners the re-
sults obtained when running CodeFace4Smells on their
communities, asking for confirmation. As an outcome,
they all reported the validity and usefulness of the tool,
without pointing out additional problematic situations oc-
curred in their communities. In other words, according
to developers, the community smells output by the tool
are all true positives; as for false negatives, if they ex-
ist, these were not pointed out by original developers. The
results achieved by the tool in previous studies [78, 72]
make us confident of the high reliability of the tool and
its suitability for our study. What is more, the tool is
currently undergoing re-implementation featuring an R-
package based implementation which is bound to make

the execution—and therefore the replication of the mate-
rial in this paper—of the tool more straightforward. This
new version, called Kaiaulu, is still under development
and evaluation, but its repository is already available at:
http://itm0.shidler.hawaii.edu/kaiaulu/.

To address RQ1 and evaluate the relationship between
community patterns and smells we performed a three step
data collection and analysis: (1) identification of commu-
nity patterns, (2) identification of community smells and
(3) association rule discovery.

To achieve the first step we exploited both Yoshi’s
and CodeFace4Smells’ capabilities. First, we mined the
repositories of the selected projects (see Section 3.2) with
Yoshi to get the list of community patterns holding on
those communities. Then we used CodeFace4Smells
to detect the community smells affecting such communi-
ties. In order to properly analyze the communities and
not to consider too much (i.e., outdated) or insufficient
data, we conducted the community analysis by covering
a three months wide time window, as done in a previous
study [77]. Once we gained the list of patterns and smells
affecting the considered communities, we mined associa-
tions rules [1] to discover which community patterns and
smells might co-occur. In particular, association rule dis-
covery is an unsupervised learning technique used for local
pattern detection, highlighting attribute value conditions
that occur together in a given dataset [1]. In our case,
the dataset contained the set of community patterns and
smells discovered for each of the considered projects. An
association rule Rleft → Rright implies that, if a certain
community pattern occurs in a project, then a community
smell should occur as well. The strength of an associa-
tion rule is determined by two metrics, i.e., support and
confidence [1]:

support =
|Rleft ∪Rright|

T
(1)

confidence =
|Rleft ∪Rright|

Rleft
(2)

where T is the total number of co-occurrences between
community patterns and smells in our dataset. To imple-
ment association rules, we exploited the well-known aPri-
ori algorithm [2], which is available in the R toolkit.4 In
Section 4.2 we report and discuss the association rules hav-
ing a support higher than 0.6 and confidence higher than
0.8 [1]. This focus is necessary to produce and report only
the association rules having the highest strength.

Furthermore, we computed the lift metric, which mea-
sures the ability of a rule to correctly identify a relation-
ship with respect to a random choice model [1]. A lift value
higher than 1 indicates that the left-hand and right-hand
operators of an association rule appear together more of-
ten than expected, thus meaning that the occurrence of

4https://www.rdocumentation.org/packages/arules/versions/1.6-
4/topics/apriori.

http://itm0.shidler.hawaii.edu/kaiaulu/

the left-hand operator often implies the co-presence of the
right-hand operator. To understand the statistically sig-
nificance of the rules found, we employed Fisher’s exact
test [26] on the lift value achieved by the mined associa-
tion rules: specifically, the test measures the significance of
the deviation between the association rule model and the
random choice models compared when computing the lift.
The statistical significance is obtained in case of p-value
lower than 0.05.

4.2. Results Analysis
Table 2 reports the association rules, grouped by com-

munity pattern, extracted after the application of the
aPriori algorithm. In this section, we also provide some
qualitative analysis of the association rules aimed at fur-
ther investigating the results and possibly understanding
whether the relation between community patterns and
smells is causal: to this aim, however, we deeply anal-
ysed only a subset of the systems contained in our dataset.
Specifically, we focused on the two projects, namely Ar-
duino and SaltStack (a.k.a. Salt in our sample).

A first consideration is related to the fact that, when
not filtering association rules by support and confidence,
we found relationships between smells and all the commu-
nities identified by Yoshi with the exception of Formal
Networks (FNs). Likely, this is due to the rigorousness
used to select members in this community type: indeed,
only certified and acknowledged developers can become
members of these types of communities, which typically
operate under strict regulatory contribution policies and
codes of conduct [79]. As a consequence, developers within
the community need to follow strict code of conducts to
continue contributing, and this is known to address a num-
ber of known organisational issues, but also manifesting
unexpected ones, such as higher turnover [79]. In our case,
think of Arduino, where Yoshi identifies a formal net-
work: in this context, the developers adopted a code of
conduct5 to avoid unfriendly behavior among members.
This result seems to confirm previous findings indicating
that the usage of code of conducts actually supports the
activity of software communities by creating a friendly and
inclusive environment [79].

On the other hand, other community types are quite
prone to be smelly. In our dataset, Formal Groups (FGs)
are strictly connected with two types of community smells,
i.e., Bottleneck and Lone Wolf. To discover the rea-
sons behind the relationship, we manually analyzed the
sources of communications the systems rely on, i.e., the
GitHub issue trackers and the mailing lists. Basically,
formal groups are formed by people which are explicitly
grouped to reach single specific missions. The problems
arise in case two groups of the network need to communi-
cate: in these cases it is usual that such groups communi-
cate by means of a representative member, thus naturally

5http://forum.arduino.cc/index.php?topic=148996.0

leading to the introduction of a Bottleneck smell instance,
which appears when there is an overhead due to mem-
bers interposing themselves into every formal interaction
between two groups. An interesting example appeared in
the Arduino community, where the communications re-
lated to programming questions6 are often conducted by
two specific members, i.e., Member A7 (present in 2,675 fo-
rum posts over the total 3,410) and Member B (present in
2,155 forum posts over the total 3,410). At the same time,
the fact that this community type is characterized by a ex-
cessively formal communication process, could reasonably
lead to the rising of a Lone Wolf smell, which represents an
extreme case of formal group, i.e.,, when a small set of de-
velopers perform their tasks without caring the decisions
made within the group.

Besides having a high support and confidence values,
the rules found also have a lift higher than 1, confirming
that the two community smells often appear within formal
groups. Note that the high lift values are also statistically
significant as the Fisher’s exact test quantified the p-values
as lower than 0.05.

The relationships between the Informal Communities
(ICs) and the Organizational Silo effect and Lone Wolf
smells were also quite expected. In this case, an informal
community refers to highly-dispersed organizations hav-
ing a common goal. The high dispersion of developers
makes the community intrinsically more prone to be af-
fected by the Organizational Silo effect, since it may hap-
pen that some of the developers do not communicate with
others causing poor social connections among the commu-
nity members.

The high dispersion characteristic also explains the re-
lationship with the Lone Wolf smell: as previously ex-
plained, this smell appears when a single developer or a
small group of community members work in isolation with-
out considering the decisions made within the community.
Of course, a dispersed environment without a well defined
structure is more prone to such behavior, since developers
cannot physically meet each other daily. The results were
also confirmed looking at the lift value, which was higher
than 1, and thus statistically significant (p-values lower
than 0.05).

As for Informal Networks (INs), it is worth remarking
that this community type does not use governance prac-
tices. As such, it is naturally prone to the appearance of a
Black-cloud instance, i.e., information overload caused by
the lack of structured communication. At the same time,
lack of governance also tends to make developers more in-
dependent from the community, possibly leading to the
introduction of a Lone Wolf smell instance. In these cases,
the lift values were higher than 1, while the p-values lower
than 0.05, as well: for this reason, we can conclude that
the relationships discovered are meaningful and statisti-
cally significant.

6http://forum.arduino.cc/index.php?board=4.0
7Names of developers are anonymised to preserve their privacy.

Table 2: Association rules between community patterns and smells.

Rule Support Confidence Lift p-value
Formal Group → Bottleneck 0.77 0.91 1.54 0.033
Formal Group → Lone Wolf 0.73 0.88 1.26 0.013
Informal Community → Organisational Silo 0.74 0.94 1.69 0.011
Informal Community → Lone Wolf 0.68 0.82 1.63 0.022
Informal Network → Lone Wolf 0.71 0.85 1.46 0.024
Informal Network → Black Cloud 0.69 0.83 1.55 0.043
Network of Practice → Bottleneck 0.76 0.89 1.59 0.032

Finally, we found an unexpected connection between
Networks of Practice (NoPs) and the Bottleneck smell. By
definition, a network of practice is a community that con-
nects communities of practice, i.e., collocated groups in
which interactions are frequent and collaborative. While
such communities should theoretically be effective in com-
munication, they are often affected by a Bottleneck due to
developers who act as middleman between two groups. For
example, in the Salt project a single developer managed
most of the communications performed by developers, be-
coming de facto a bottleneck. Interestingly, the lift value
reached 1.59, with p-value equal to 0.032, confirming the
relationship’s significance.

To broaden the scope of the discussion, the results
achieved show that different community patterns are more
prone to be affected by different community smells: this
practically means that the information extracted by Yoshi
about the community pattern can be exploited by prac-
titioners as a useful source to diagnose and understand
underlying social, socio-technical as well as organizational
issues across their community.

Finding 1. Different community patterns relate
to different community smells. The reasons behind
the presence of smells are strongly related to the
characteristics and peculiarities of the community
patterns.

5. RQ2, RQ3 - On the Impact of Community Pat-
terns on Process and Product

In this section we discuss the research methodology
and the results achieved when investigating our second and
third research questions, the core of this extension.

5.1. Research Methodology
The goal of the two research questions is to analyze

the impact that community patterns—along with other
product and process characteristics—have (i) on the main-
tainability of a system (RQ2) and (ii) on the community
engagement, in terms of contributions and issues created
in the project’s repository (RQ3).

Dependent Variable(s). For RQ2, we measured the
maintainability through the use of Maintainability Index
(MI) [81] which is an aggregate of traditional source code
metrics, used to indicate the degree of maintainability of
a given system. This metric is able to capture different
source code aspects which are related to maintainability,
i.e., size, volume and complexity, irrespective of the pro-
gramming language and paradigm—since we considered
systems developed in different languages. Since its origi-
nal formulation by Oman and Hagemeister [57], there have
been many variants of such a metric, all of them combin-
ing the Lines Of Code (LOC), the McCabe’s Cyclomatic
Compexity (CC) [48] and one of the Halstead metrics (i.e.,
Volume or Effort) [33] into a polynomial equation. In this
paper we consider the modified 3-metrics variant, whose
formula is reported below:

MI = 171− 5.2 · ln(avgHV)

− 0.23 · avgCC
− 16.2 · ln(avgLOC)

(3)

where avgHV, avgCC and avgLOC are, respectively,
the average Halstead Volume, Cyclomatic Complexity, and
Lines Of Code, computed over all the considered source
code files. We exploited Multimetrics,8 an open-source
automatic metrics extraction tool to get the average values
of MI, over all the considered source code files, of the
selected projects. Due to computational constraints, we
run Multimetrics only on the source files written in the
main project language (e.g., for Scikit-Learn, only the
.py files were considered). To avoid dissimilarity with the
investigation of RQ1, the metrics were computed for the
state of each project as of 30th April 2017 (inclusive).

The investigation of RQ3 focused on two different as-
pects explaining the engagement in open-source commu-
nities, i.e., the number of contributions and the created
issues, so we used two different dependent variables to
separately analyze how they are affected by the presence
of community patterns; in particular, we used, respec-
tively, the number of commits (i.e., #commits) and the
number of created issues (i.e., #created_issues) un-
til 30th April 2017 (inclusive), just as the investigation of
RQ1. Furthermore, considering that these two metrics are

8https://pypi.org/project/multimetric/

https://pypi.org/project/multimetric/

strongly influenced by the project sizes, i.e., larger project
tend to have a higher number of commits and issues, we
divided them by the number of lines of code (LOC). As a
result, we considered the dependent variables explained in
the following equations:

commits_intensity =
#commits

LOC
(4)

issues_intensity =
#created_issues

LOC
(5)

The extraction of such metrics was supported by the
open-source tool GrimoireLab.9

Independent Variable(s). We used the pres-
ence/absence of the 6 considered community patterns,
represented as 6 different boolean variables, as indepen-
dent variables for both RQ2 and RQ3 (as explained in
Section 3.2).

Confounding Factors. We suspected that the presence
of community patterns could have a significant impact on
both maintainability (RQ2) and community engagement
(RQ3) only if they are considered together with other
product- and process-related factors. For this reason, we
considered additional confounding factors, collected with
the support of different automatic analysis tools. Since
the selected projects are implemented using different pro-
gramming languages and paradigms (i.e., procedural and
object-oriented), we could not capture certain paradigm-
specific aspects, such as cohesion and coupling [17], limit-
ing our choice for the selection of the metrics. Thus, the
extraction tools we exploited work with different languages
and ignore paradigm-specific aspects. We used these three
open-source tools to fulfill our needs:

• Cloc,10 for extracting size metrics.

• Multimetrics (already used for MI) for extracting
complexity metrics.

• GrimoireLab (already used for #commits and
#created_issues), for extracting process metrics.

The complete list of selected confounding factors is re-
ported in Table 3. Please, note that some of the con-
founding factors were used as dependant variables in some
models: when doing so, they were not considered as con-
founding factors.

Statistical Modeling. For RQ2 we defined the follow-
ing set of null (Hn) and alternative (Ha) hypotheses, con-
taining a pair of hypotheses per each involved community
pattern:

9https://chaoss.github.io/grimoirelab/
10https://github.com/AlDanial/cloc

Table 3: List of confounding factors considered in this study.

Group Name Description
LOC Number of Lines Of Code
CC Cyclomatic Complexity
HV Halstead VolumeProduct

MI Maintainability Index
#commits Number of Commits
#contributors Number of developers who com-

mitted at least once
#organizations Number of organizations that

contributed with at least one
commit11

Process

#created_issues Number of created issues

Hn1(p): The community pattern p ∈ P has no impact on
the maintainability index.

Ha1(p): The community pattern p ∈ P has an impact on
the maintainability index.

where P = {IC, FN,FG, IN,NOP,WG}.
SinceRQ3 involves two different aspects describing the

engagement of a community, we defined other two sets of
hypotheses:

Hn2(p): The community pattern p ∈ P has no impact on
the commits intensity.

Ha2(p): The community pattern p ∈ P has an impact on
the commits intensity.

Hn3(p): The community pattern p ∈ P has no impact on
the issues intensity.

Ha3(p): The community pattern p ∈ P has an impact on
the issues intensity.

To test these hypotheses, we devise a Generalized Lin-
ear Model (GLM) [53] with the aim of relating the indepen-
dent variables, along with the confounding factors, to the
dependent variable(s). This statistical technique is used to
fit a function describing the continuous response variable
(i.e., the maintainability index, the commits intensity and
issues intensity in our case) relying on a set of categorical
and/or numerical variables (in our case, the community
patterns and the confounding factors). We used this sta-
tistical modeling approach for two reasons. On the one
hand, it is able to analyze the simultaneous effects of both
independent variables and confounding factors on the re-
sponse variable [38]; on the other hand, it does not assume
the underlying distribution of data to be normal: in our
case, we have verified the normality of the distribution ex-
ploiting the Shapiro-Wilk test [65], which fails to reject
its null hypothesis (i.e., the data are not normally dis-
tributed) and, as such, we could rely on GLM [53].

Since the predictors of the model (i.e., independent
variables and confounding factors) might be linearly cor-
related to each other, which could negatively affect the
interpretation of our linear modelling results [55, 50], we

11We discuss the threats related to the detection of organizations
in Section 7.

https://chaoss.github.io/grimoirelab/
https://github.com/AlDanial/cloc

Table 4: Pairs of correlated confounding factors (ρ2 > 0.5) for the
models of RQ2 and RQ3. The discarded factors are reported in the
‘Factor #2’ column.

Dep. Variable Factor #1 Factor #2 ρ2

MI
CC HV 0.53
LOC #commits 0.62
#contributors #created_issues 0.68

commits_intensity
CC HV 0.51
CC MI 0.59
#contributors #created_issues 0.72

issues_intensity
CC HV 0.51
CC MI 0.59
#contributors #commits 0.71

made a multicollinearity analysis to exclude possible cor-
relations among predictors. In particular, we exploited
a hierarchical clustering method based on the Spearman’s
rank correlation coefficient [67] of the considered confound-
ing factors (using the varclus function available in the
R statistical toolkit12), and so, excluding from the model
one of the two factors that showed a correlation value (ρ2)
higher than 0.5.

Among all the conflicting factors (i.e., with ρ2 > 0.5),
we selected:

• CC over HV and MI because of its significant lin-
ear relation with MI in Equation 3. It should
also be noted that similar relations have already
been highlighted as problematic in software engineer-
ing [35, 66];

• LOC over #commits because the Lines of Code
are known to be negatively correlated with main-
tainability (see Equation 3) and they are easier to
understand than number of commits;

• #contributors over #created_issues be-
cause issues can be—and, for most medium to large-
sized open-source projects in fact are [22]—created
by non-contributing users [52] as well and who do
not propose changes to the project code, so never
directly affecting its maintainability. Given this se-
lection, we discard #commits, as well.

The main results of the multicollinearity analysis are
reported in Table 4.

The models were built in a progressive manner to mea-
sure the explanatory power of different factors in a step-
by-step fashion. In particular, three models were defined
for each of the three analyses: (i) the first only consider-
ing the effects of the presence of community patterns, (ii)
the second considering both the patterns and the selected
product-related metrics, and (iii) a full model that involves
both product and process metrics as confounding factors.

To sum up, the model’s regressors consist of 6 indepen-
dent variables (i.e., the six different community patterns)
and 4 confounding factors, namely LOC (only for RQ2),

12https://bit.ly/2YFltBU

Table 5: Descriptive statistics for numerical variables used in the
models of RQ2 and RQ3. N = 21.

Variable Type Min Max Mean
MI Dependent 38.30 89.30 65.30
commits_intensity Dependent 0.016 1.19 0.25
issues_intensity Dependent 0.00 0.60 0.09
CC Co-factor 1.55 70.87 14.55
LOC Co-factor 3,122.00 644,716.00 119,690.00
#contributors Co-factor 23.00 2,599.00 532.00
#organizations Co-factor 0.00 36.00 7.48

CC, #contributors and #organizations. Table 5
shows the descriptive statistics for the all numerical vari-
ables involved in RQ2 and RQ3. Our online appendix [23]
provides the scripts and the dataset used for our empirical
study.

5.2. Results Analysis
This section reports the results analysis for both RQ2

and RQ3. The raw data extracted for answering the two
research questions are reported Table 6.

RQ2 Results. Table 7 reports the results for our second
research question. The table describes the three models
we created, i.e., (i) Patterns, (ii) Patterns + Product and
(iii) Full, to see the differences in terms of predictors sig-
nificance.

The first and more important result is the sig-
nificance of the predictor WG—corresponding to the
presence/absence of a community pattern featuring a
Workgroup—in each of the three models. Looking at the
estimated coefficient (i.e., Estimate column), we can see
that there is a positive correlation with the dependent vari-
able MI, implying that a system developed by a community
that shows the characteristics of a Workgroup (WG=1)
tends to have higher MI values, and so a better degree
of maintainability. This relation could be explained by
the definition of the Workgroups community pattern it-
self. Indeed, this pattern is characterized by a strong co-
hesion among the members of the team that are all focused
on a specific business area. This aspect could imply that
developers collaborate a lot with each other. Such a de-
gree of collaboration leads to keep more attention to soft-
ware maintainability since different developers make often
changes on the same source files.

In support of this statement, we made an additional
investigation and counted the mean number of contribu-
tors per file in projects that implement/do not exhibit the
Workgroup pattern. To conduct this investigation, we split
the list of projects reported in Table 1 into two sets: (i)
projects implementing the Workgroup community pattern
and (ii) projects implementing other community patterns.
As a result, we noticed that Workgroup communities have,
in general, a higher number of working developers per file,
as shown in the box plots in Figure 2, hinting their higher
degree of collaboration. This, however, needs further in-
vestigations.

https://bit.ly/2YFltBU

Table 6: Raw data extracted in the context of RQ2 and RQ3 and used to build the GLM models. N = 21.

Project Patterns #commits #contributors MI #orgs.

Arduino IC; FN; FG 6596 262 67.21 6
Bootstrap IN; NOP 16665 1064 40.17 9
Boto IC; IN 7282 682 57.74 34
Bundler FG; NOP 39236 761 60.17 0
Cloud9 IC; FN; FG 9160 82 53.24 0
Composer IC; FN; FG 7409 774 65.17 0
Cucumber IN; NOP 600 23 80.15 2
Ember.Js FN; WG 17594 902 74.43 15
Gollum IC; FN; FG 1970 186 69.21 4
Hammer.Js IN; NOP 1282 101 77.36 4
Hawkthorne IC; FG; IN 5568 82 73.03 1
Modernizr IN; NOP; WG 2412 260 89.26 5
Mongoid FN; FG; WG 6932 497 72.86 5
Netty IC; FN; FG 13308 419 68.00 32
PDF.Js IN; NOP 9735 307 52.53 0
Refinery FG; WG 14003 542 78.51 0
Salt FN; FG; WG 86637 2599 56.00 36
Scikit-Learn FG; IN; NOP 23110 1146 38.34 0
Scrapy FN; FG; WG 7063 298 68.72 2
SimpleCV IC; FG; IN; NOP 2649 108 60.01 0
SocketRocket FG; IN; NOP 537 81 69.27 2

Table 7: The results of the GLM built for answering RQ2 - the impact of community patterns on maintainability (measured with MI).
‘Estimate.’ column reports the estimated regression coefficient (whose standard error is reported in ‘Std.Err.’ column) of the model. ‘Signif.’
column reports the significance of each coefficient according to the significance codes described at the bottom of the table. N = 21.

Patterns Patterns + Product Full
Term Estimate Std. Err. Signif. Estimate Std. Err. Signif. Estimate Std. Err. Signif.
(Intercept) 57.02 14.94 ** 69.26 10.93 *** 75.66 10.47 ***
FG −4.25 7.81 −7.50 5.56 −7.59 5.69
FN −8.18 10.34 −1.13 7.49 −2.05 6.62
IC 18.51 9.00 . 11.07 6.61 6.20 6.16
IN −7.77 11.21 −4.26 7.86 −4.46 7.06
NOP 7.89 10.36 5.63 7.25 3.38 6.96
WG 25.25 9.50 * 15.80 7.13 * 15.91 6.36 *
CC −0.43 0.14 ** −0.41 0.14 *
LOC −0.00 0.00 0.00 0.00
Contributors −0.01 0.00 .
Organizations −0.02 0.26

Significance codes: ‘***’p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1

This first finding led us to reject the null hypoth-
esis Hn1(WG) in favor of the alternative hypothesis
Ha1(WG): “the community pattern WG has an im-
pact on the maintainability index” . Unfortunately, none
of the other patterns even became significant over the
three iterations, thus we could not reject (either con-
firm) the other null hypotheses, i.e., Hn1(p), where p ∈
{IC, FN,FG, IN,NOP}. More work needs to be enacted
in this research direction and possibly with more evidence
from a more varied selection of open-source projects to
warrant for a more definitive conclusion.

Another variable that well explains our dependent one
is CC, made significant in the second and third model. The
estimated coefficient shows a negative sign, thus meaning
that higher cyclomatic complexity values tend to decrease
the maintainability. This finding is quite easy to explain,
since complex code is less understandable and maintain-
able, as already stated by other research on the topic [31].

Finally, these results show a weak significance of IC

in the first model, and a weak significance of the num-
ber of contributors (#contributors) in the third model.
While the latter shows also an Estimate of −0.01 and a
Standard Error of 0 in the third model, meaning that it has
very little impact on the dependent variable, the former is
a bit trickier to explain: we note that in the second and
third model, IC loses its significance, meaning that other
confounding factors have a greater impact in explaining
the model.

Finding 2. The presence of community pat-
terns featuring Workgroups (WG) has a positive
impact on maintainability, meaning that projects
maintained by WG-like communities tend to have
higher maintainability in their respective codebases.
The impact of other community patterns requires
further investigation.

Table 8: The results of the GLM built for answering RQ3 - the impact of community patterns on commits intensity (measured with
#commits / LOC). ‘Estimate’ column reports the estimated regression coefficient (whose standard error is reported in ‘Std.Err.’ column)
of the model. ‘Signif.’ column reports the significance of each coefficient according to the significance codes described at the bottom of the
table. N = 21.

Patterns Patterns + Product Full
Term Estimate Std. Err. Signif. Estimate Std. Err. Signif. Estimate Std. Err. Signif.
(Intercept) 1.18 0.24 *** 1.08 0.24 *** 1.14 0.26 ***
FG −0.08 0.12 −0.05 0.12 −0.09 0.14
FN −0.80 0.16 *** −0.85 0.16 *** −0.82 0.17 ***
IC −0.15 0.14 −0.09 0.14 −0.10 0.16
IN −0.80 0.18 *** −0.83 0.17 *** −0.80 0.18 **
NOP −0.13 0.16 −0.11 0.16 −0.17 0.18
WG −0.09 0.15 −0.01 0.15 −0.02 0.16
CC 0.00 0.00 0.00 0.00
Contributors 0.00 0.00
Organizations −0.00 0.01

Significance codes: ‘***’p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1

Table 9: The results of the GLM built for answering RQ3 - the impact of community patterns on issues intensity (measured with
#created_issues / LOC). ‘Estimate.’ column reports the estimated regression coefficient (whose standard error is reported in ‘Std.Err.’
column) of the model. ‘Signif.’ column reports the significance of each coefficient according to the significance codes described at the bottom
of the table. N = 21.

Patterns Patterns + Product Full
Term Estimate Std. Err. Signif. Estimate Std. Err. Signif. Estimate Std. Err. Signif.
(Intercept) 0.31 0.17 . 0.21 0.16 0.23 0.18
FG −0.11 0.09 −0.08 0.08 −0.10 0.10
FN 0.01 0.12 −0.03 0.11 −0.02 0.12
IC −0.14 0.10 −0.08 0.10 −0.08 0.11
IN −0.06 0.13 −0.08 0.11 −0.08 0.13
NOP −0.05 0.12 −0.03 0.10 −0.05 0.12
WG −0.15 0.11 −0.07 0.10 −0.07 0.11
CC 0.00 0.00 . 0.00 0.00
Contributors 0.00 0.00
Organizations −0.00 0.00

Significance codes: ‘***’p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1

RQ3 Results. Table 8 shows the results of the first set of
hypotheses of RQ3, regarding the impact of community
patterns on the commits intensity, while Table 9 depicts
the results for the second set of the hypotheses, the ones
regarding the impact on the issues intensity. Similarly as
what was done for RQ2, the tables report the three in-
cremental models outcomes, namely (i) Patterns, (ii) Pat-
terns + Product and (iii) Full.

Considering the first set of model, it is possible to ap-
preciate that in all the three computed models, FN and
IN have a high statistical significance (as well as the inter-
cept), meaning that they have a strong influence over the
intensity of commits. This is also quite understandable,
taking into account the nature of the considered commu-
nity patterns. On the one hand, Formal Networks (FN)
are very formal communities, and by their nature, contri-
butions (commits in this case) must follow a strict proto-
col to be accepted. On the other hand, Informal Networks
(IN) do not have such rigid rules, so it is potentially eas-
ier to contribute to a project. In both cases, either posi-
tively or negatively, the presence of these patterns highly
influence how much people contribute to a project. These

results allow us to reject Hn2(FN) and Hn2(IN) null hy-
potheses, in favor of the alternative hypotheses Ha2(FN)
(“the community pattern FN has an impact on the num-
ber of commits”) and Ha2(IN) (“the community pattern
IN has an impact on the number of commits”). Unfortu-
nately, none of the other patterns even became significant
over the three iterations, thus we could not reject (either
confirm) the other null hypotheses, i.e., Hn2(p), where
p ∈ {IC, FG,NOP,WG}. More work needs to be enacted
in this research direction and possibly with more evidence
from a more varied selection of open-source projects to
warrant for a more definitive conclusion.

When considering, however, the issues intensity as de-
pendent variable, we cannot find important conclusions
regarding community patterns. Indeed, looking at Table
9, we can see that none of the models report any statistical
significance for the community patterns.

It is worth noting that issues are generally created later
after the addition of a feature or, in general, after a release.
Thus, it is more likely that the issues regarding a prod-
uct developed under a particular governance mechanism
(i.e., community pattern) are created outside the consid-

0

5

10

15

0 1
WG

M
ea

n
of

 C
on

tr
ib

ut
or

s
pe

r
F

ile

Figure 2: Mean of contributors per file in projects that ex-
hibit(WG = 1) vs. do not exhibit (WG = 0) the Workgroup com-
munity pattern. N = 21.

ered time window, rather than within it, meaning that the
effects of a community pattern are not immediately visible
on the short term.

Although these results do not allow us to reject any of
the second set of null hypotheses Hn3(p), they suggest a
good starting point for a further research, aimed to inves-
tigate the mid/long term effects of community patterns on
the quality of the product and on the engagement of the
community.

Finding 3. IN and FN community patters have
shown to have a significant impact over the inten-
sity of commits made to a project. However, no
community pattern showed a significant impact on
the intensity of created issues. This result could be
due to the fact that we considered a limited time
window and issues (introduced using a certain or-
ganization structure) could have been created later.
Our conclusion is that other investigations with ad-
ditional data are required.

6. Discussion and Implications

6.1. Practical Implications: Software Community Man-
agement and Beyond

The theoretical underpinnings of the present work as-
sume that a community management protocol can be de-
signed and operationalized to support the data-driven gov-
ernance for specific software community targets, namely,

that a specific community A aiming for stability might
require specific protocol actions Ax and Ay. Our results
indicate already some of the potential such actions. For
example, suppose a commmunity has an overly high num-
ber of so-called lone-wolves; our results indicate that an
unintended polarisation maybe exists in the community
which drives community contributions towards an overly
formal group or an overly informal community. In this
instance, the consequent actions would require adopting
specific software community management tactics to influ-
ence the re-design of the community in the desired di-
rection (e.g., by adding code contribution protocols to an
overly informal community). On the one hand, the study
and practical elaboration of the aforementioned tactics en-
abled by this and similar studies are still very much in their
infancy. On the other hand, the growth and turmoil that
often interests both open- and closed-source communities
alike demands immediate action. From the perspective of
this study however, we regard the association rules in Tab.
2 as opportunities to start the preparation of the aforemen-
tioned tactics, using them as the roots for factual actions
that can be undertaken towards community re-design.

Beyond the aforementioned community management
implications, our study also reflects on the negative conse-
quences connected to acting short on community aspects
and their management. For example, on the one hand our
data indicates that work-groups have a peculiar relation
with the patterns found and therefore deserve special at-
tention in the future of software maintainability; for exam-
ple, if maintainability is indeed a feature of WGs then per-
haps every software community prone to long-lived soft-
ware should have a community component designed to
operate like such a WG community type. On the other
hand, our study results also indicate that patterns them-
selves are, for example, somewhat linked with the amount
of contributions reported for the emerging software arte-
facts catered by the communities reflecting those patterns
in a non-trivial relation that our fairly limited exploratory
study was not able to narrow down.

While we do not have enough data to conjecture on the
implications of the non-trivial relations highlighted before,
one observation is clear: the relation between community
patterns, smells, and the underlying software product and
process are very much non-trivial and will likely require
considerable systematic empirical research in the future.
For example, research questions such as “what community
conditions are reflected by software architectures that de-
liberately simplify software complexity?” but even simply
“how can community governance benefit from architectural
tactics to redesign communities into more efficient forms?”.
Questions such as the ones highlighted before have a con-
siderable practical implication and are bound to play a key
role in the future pages of social software engineering and
software community management in practice.

6.2. Community Management in Practice: A focused look
To give a better account of the findings and impli-

cations of our study, let us take a deeper dive into two
major communities—the largest in our sample in fact—
namely, Arduino and SaltStack. Both community have
a strong tendency towards structure and formality, with
a lesser extent at that within the Arduino community.
On the one hand, both communities basically sit at two
opposites with respect to the number of organizations fea-
tured inside the respective communities (i.e., 6 for Ar-
duino and 36 for SaltStack). On the other hand, the
presence of a lower number of organisations involved seems
to justify the lower formality in Arduino when compared
to SaltStack, which appears as a more structured and
co-organized counterpart in this comparison.

Future investigations could look further into these such
relations which appear to be non-trivial and yet have a
clear yield over the maintainability and long-term sustain-
ability of community structures as well as their maintained
software. What is more, the framework we propose in the
scope of this paper does not warrant any further elabora-
tion on the process of re-design or “rewiring” of organisa-
tional structures to migrate from one form (say the Ar-
duino IC-FN-FG form) to another and yet this migration
exercise could warrant any number of beneficial commu-
nity characteristics, starting from a higher software main-
tainability to community features [73] that are currently
unknown. For example, in a hypothetical ordering of the
patterns we discovered in the scope of this and precedent
works (e.g., see the proposal in Figure 3) with respect to
the dimensions of globality (X-axis) and formality (Y-axis),
the patterns corresponding to Arduino and SaltStack
appear under an unprecedented lens of analysis, one which
looks at the tradeoffs between organisational conditions
across those communities and the technical characteristics
warranted by such tradeoffs.

Focusing back on our Arduino vs. SaltStack case,
the two patterns reflect perhaps two different stages of ma-
turity of the organisation where, if more than one organisa-
tion plays a role, then a more formal organisational struc-
ture ensues, moving the pattern higher up in the schema.
At this point, theoretical models such as the one repre-
sented in Figure 3 need further work and validation, per-
haps starting from a replication of this study with larger,
longitudinal datasets.

6.3. Observations and Lessons Learned
From an overall perspective, two observations become

evident.
First, there is in fact a considerable influence played by

community types over the processes and products of soft-
ware life-cycles. While certain patterns featuring specific
community types—e.g., our reports over the Workgroups
type—offer a more evident influence and occurrence, a gen-
eral understanding on which organisational approach (fea-
turing WGs or other types) is most appropriate to which

Figure 3: Arranging software community structure patterns, a 2-
dimensional hypothesis space.

software activity remains undetermined. What is more,
from several statistical analyses stemming from our study
it becomes evident that a larger-scale, perhaps longitudi-
nal study is needed to find specific organisational patterns
best fitting software endeavours.

Second, the relevant occurrence of specific community
smells in combination with specific types leads to con-
jecturing that there exist most-effective community pat-
terns wherefore specific community smells are mitigated
by-design. For example, we found no evidence of silo effects
within none of the most formal (i.e., Formal Groups) and
semi-formal community types (i.e., NoPs) which may in-
dicate that the stricter working dynamics typical of those
types inhibit independent emergence of sub-groups. At
the same time, specific community smell effects, such as
the Lone Wolf effect, seem to manifest more or less in-
discriminately in many types. In summary, the organisa-
tional health parameters and thresholds for the aforemen-
tioned effectiveness of patterns remain to be determined
as well. The aforementioned study most likely needs to
involve a rigorous data-driven investigation of known com-
munity smells and patterns together with a varied array
of software quality metrics and parameters as well.

7. Threats to Validity

In this section we discuss factors that might have in-
fluenced our study and be a threat to its validity, focusing
on threats to construct, conclusion and external validity.

7.1. Threats to Construct Validity
Threats to construct validity are related to the re-

lationships between theory and observation. Generally,
this threat refers to imprecision in the measurements per-
formed.

In our case, this impacts all the gathered data, as it
might be “biased” by the imprecision of the exploited tools.
However, not only both Yoshi and CodeFace4Smells
were previously validated [76, 69, 75, 43], showing good de-
tection capabilities, but also Multimetrics, Cloc, and
GrimoireLab can be considered as reliable measurement
tools. Furthermore, in order to avoid possible misuse or
misinterpretation of the results, we carefully followed the
tools’ official documentation. This increases the reliabil-
ity of our study and make us confident of the accuracy
of the collected data. Despite these countermeasures, we
could not avoid possible wrong interpretations caused by
the way the tools compute the metrics. As an example,
GrimoireLab computes an estimate of the number of
organizations based on the database built by the Sort-
ingHat13 module, which aggregates data from different
sources. Namely, GrimoireLab maps the various orga-
nizations to developers based on their email domain—for
instance contributors’ emails having the bitergia.com do-
main are assigned to Bitergia organization. Because of
this assumption, GrimoireLab could still detect no orga-
nizations in a project. This limitation may underestimate
the actual number of organizations involved in a project.

Both Multimetrics and Cloc work at the granular-
ity level of a single source file, requiring us to aggregate
the metrics they computed to bring them to the project
granularity level. Namely, we summed up the size val-
ues together, while we averaged the other ones. Moreover,
due to computational constraints, we run them only on
the source file written in the main project language, pos-
sibly losing important information from other source files
written in a different language. Another potential threat
to construct validity could be the operationalisation of
communication and collaboration, as they come only from
the mining of GitHub commit history and issues con-
versation. Although there might be many other channels
for communication (e.g., Slack) and issue tracking (e.g.,
Jira), we find that the sole mining of GitHub is reliable
enough to our extent. As a matter of fact, we manually
checked whether the conversations among developers were
taking place on GitHub, by inspecting the level of use of
the integrated issue tracker within each of the considered
repositories. We found that all of the 21 projects actively
open and resolve GitHub issues, hinting that most of the
communication happens there.

Another threat to the validity of the study might be
represented by the usage of the maintainability index. We
are aware that MI has some limitations when used as an
indicator of the overall maintainability of a software sys-
tem. As a matter of fact, its effectiveness has been the
subject of several studies [34, 19, 45, 18, 28], highlighting
its poor explainability and practicality—e.g., identifying
the best possible actions to put in place to improve the
MI value [34]. We still opted for this metric because of

13https://github.com/chaoss/grimoirelab-sortinghat

its capability to summarize the maintainability status of
software projects as a whole with just a single comparable
value, as well as its language and paradigm independence.
Over the last two decades, there have been some efforts
in replacing the current MI with a wide range of software
metrics that could describe different sub-characteristics of
maintainability [34]. The use of multiple dependent vari-
ables to describe the maintainability from different points
of view was left out from this study, and it is part of our
research agenda.

The period under consideration, i.e., a three-months-
wide time window, might also be another potential threat
to the validity of the study, since we might have neglected
some aspects which were more evident on a larger (or nar-
rower) time interval. However, this was a design choice
made by the developer of both of the tools that we have
employed, which is supported by previous studies [78, 77].
In fact, this time window not only is the is required to ob-
serve a meaningful organisational activity which reflects
an observable and reasonably stable organizational config-
uration, but also allows to correctly analyze the organisa-
tional aspects of a software community excluding outdated
information.

Finally, another potential threat to construct validity
could be related to the indirect relations between the se-
lected metrics (i.e., larger systems, in terms of LOC, are
likely to have a higher number of commits, issues, contrib-
utors, etc.). To mitigate this threat, we exploited inten-
sive metrics to describe our dependent variables in RQ3,
namely commits intensity and issues intensity. However,
independent and confounding variables could suffer from
this problem as well. For instance, it is reasonable to think
that also other metrics, such as the cyclomatic complexity
or the number of contributors could be related to LOC.
Therefore, as future work, we plan to focus on a wider set
of intensive metrics, given that in the context of this study
we mostly focused on extensive ones.

7.2. Threats to Conclusion Validity
The main threat in this category is the use of the aPri-

ori algorithm to discover the relationships between the ob-
served phenomena. On the one hand, this technique has
been widely adopted by researchers to study hidden rela-
tions between two phenomena (e.g., [60, 59, 83]), whose
validation process involved not only statistical evaluation,
but also a survey study actively involving the interested
communities. On the other hand, we only considered and
discussed the strongest rules, namely the most reliable
ones which had high support and confidence. In addition,
we also closely looked at two systems of the dataset with
the aim of providing qualitative examples and a rationale
that explains the rules discovered.

Another threat is related to the actual suitability of
the employed statistical method, i.e., Generalized Linear
Model. In this regard, before selecting it we verified the
assumptions that the model makes on the underlying data.

https://github.com/chaoss/grimoirelab-sortinghat

Moreover, to strengthen the causality links between
dependent and independent variables, we involved a set
of confounding factors in order to discover possible ad-
ditional causes that may have an impact on the depen-
dent variables. We are aware of the fact that we selected
only a limited number of process-related factors, which
could under-represent the actual process dynamics of the
projects. Indeed, we could have left out some other rel-
evant process metrics, such as the number of re-opened
issues, thus causing possible biased interpretations of the
results obtained fromRQ2 andRQ3. However, since some
of them resulted to be too difficult to compute and that
the main focus of the work was to investigate the effects
caused by the different community patterns, we selected a
set of metrics that were easier to compute and explain.

7.3. Threats to External Validity
The main issue concerned with the generalisation of the

results is the number of software communities analysed in
the study. While a set of 25 systems is not a statistically
significant sample of the most active projects present in
GitHub, it allowed us to perform finer observations look-
ing at some specific projects of our dataset, which were
studied closely. For this reason, we believe that the dataset
can be considered large enough for answering our first re-
search question. In addition, to make our findings as gen-
eralisable as possible we took into account a variety of
communities having different characteristics, scope, size,
and coming from different application domains. We plan
to extend our investigation to a larger set of communities.
However, as consequence of this trade-off, the analysis per-
formed to answer RQ2 and RQ3 suffered for the lack of a
good amount of observations (i.e., projects), requiring us
a replication of the study with additional community data
in the future. Currently, on the basis of these results, we
can only partially answer RQ2 and RQ3.

The choice of focusing on certain community patterns
and smells might be a threat to the generalisation of the
results as well. While further replications of our work
would be desirable and already part of our future research
agenda, in our context we had to limit the analysis to those
patterns and smells because of the tools available.

8. Conclusion and Future Work

In this paper, we studied the relation between com-
munity patterns and a set of community-, product- and
process-related factors in open-source software projects.
We identified community patterns in a set of 25 open-
source projects, hosted on GitHub, exploiting Yoshi,
while we detected the (i) community smells that affect
the same set of projects using CodeFace4Smells and
(ii) some key product and process metrics using Multi-
metrics, Cloc and GrimoireLab. Finally, we (i) ex-
ploited association rule mining, particularly the aPriori
algorithm, to discover relations between them and (ii) built

multiple Generalized Linear Models that related the pat-
terns, along with product and process metrics, to the main-
tainability of the system and the quality of the develop-
ment process. The key findings of the study show that:
(1) specific community smells may arise depending on the
peculiarities of the community organization; (2) specific
community patterns may have a direct impact on short
term process and product attributes.

From a practical perspective, our results aid practi-
tioners to prevent the occurrence of targeted community
smells, as well as raising the community managers’ poten-
tial awareness of which community patterns may be active
within the community and generating said smells as well.
Furthermore, the statistical investigation reported in this
paper brings about findings over the nature of community
types, as well as their proneness to which specific influ-
ences over software processes and products.

In the future, we plan to investigate the discovered re-
lations more rigorously as part of additional and follow-
up longitudinal studies. We are planning, for example,
to replicate these studies on a larger dataset, considering
a wider time windows, in the attempt of answering the
questions left pending. Furthermore, we plan to conduct
a qualitative study, i.e., a survey or semi-structured inter-
views, to further analyse the investigated communities and
the correlation between community pattern and smells, as
well as their impact on process and product quality at-
tributes. Finally, in the future we plan to more system-
atically investigate the known metrics reflecting software
process and product characteristics in a wider selection of
settings (e.g., industrial as well as hybrid open-/closed-
source) with the community aspects in our study, with the
goal to scope out the phenomenon we addressed in this
exploratory study.

Acknowledgements

This work is supported by the European Commission
grant no. 825480 (SODALITE H2020) and no. 825040
(RADON H2020). We thank all members of the SO-
DALITE and RADON consortia for their inputs and feed-
back to the development of this paper. Furthermore, we
thank the editor and anonymous reviewers for the invalu-
able feedback over this paper.

References

[1] Agrawal, R., Imieliński, T., Swami, A., 1993. Mining association
rules between sets of items in large databases. SIGMOD Rec.
22, 207–216. doi:10.1145/170036.170072.

[2] Agrawal, R., Srikant, R., 1994. Fast algorithms for mining as-
sociation rules in large databases, in: Proceedings of the 20th
International Conference on Very Large Data Bases, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA. p. 487–499.

[3] Alba, R.D., 1973. A graph-theoretic definition of a socio-
metric clique. Journal of Mathematical Sociology 3, 3–113.
URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.89.8697.

http://dx.doi.org/10.1145/170036.170072
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.8697
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.8697

[4] Albino, V., Garavelli, A.C., 1998. A neural network applica-
tion to subcontractor rating in construction firms. International
Journal of Project Management 16, 9–14.

[5] Almarimi, N., Ouni, A., Chouchen, M., Saidani, I., Mkaouer,
M.W., 2020. On the detection of community smells using ge-
netic programming-based ensemble classifier chain, in: Proceed-
ings of the 15th International Conference on Global Software
Engineering, pp. 43–54.

[6] Baron, D.P., Besanko, D., 1992. Information, control, and or-
ganizational structure. Journal of Economics & Management
Strategy 1, 237–275.

[7] Bird, C., Nagappan, N., Gall, H., Murphy, B., Devanbu,
P., 2009. Putting it all together: Using socio-technical net-
works to predict failures, in: Proceedings of the 2009 20th
International Symposium on Software Reliability Engineering,
IEEE Computer Society, Washington, DC, USA. pp. 109–119.
doi:10.1109/ISSRE.2009.17.

[8] Bloodgood, J.M., Morrow Jr, J., 2003. Strategic organizational
change: exploring the roles of environmental structure, internal
conscious awareness and knowledge. Journal of Management
Studies 40, 1761–1782.

[9] Borges, H., Hora, A., Valente, M.T., 2016. Understanding the
factors that impact the popularity of github repositories., in:
IEEE International Conference on Software Maintenance and
Evolution, IEEE, –. pp. 334–344.

[10] Cataldo, M., Herbsleb, J.D., Carley, K.M., 2008a. Socio-
technical congruence: a framework for assessing the impact
of technical and work dependencies on software development
productivity, in: Empirical software engineering and measure-
ment, ACM, New York, NY, USA. pp. 2–11. URL: http://
doi.acm.org/10.1145/1414004.1414008, doi:http://doi.acm.
org/10.1145/1414004.1414008.

[11] Cataldo, M., Herbsleb, J.D., Carley, K.M., 2008b. Socio-
technical congruence: a framework for assessing the impact
of technical and work dependencies on software development
productivity, in: ESEM ’08: Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineer-
ing and measurement, ACM, New York, NY, USA. pp. 2–
11. URL: http://portal.acm.org/citation.cfm?id=1414008,
doi:http://doi.acm.org/10.1145/1414004.1414008.

[12] Catolino, G., Palomba, F., Tamburri, D., Serebrenik, A., Fer-
rucci, F., 2019a. Gender diversity and community smells: In-
sights from the trenches. IEEE Software .

[13] Catolino, G., Palomba, F., Tamburri, D.A., . The secret life of
software communities: What we know and what we don’t know
.

[14] Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A., Fer-
rucci, F., 2019b. Gender diversity and community smells: in-
sights from the trenches. IEEE Software 37, 10–16.

[15] Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A., Fer-
rucci, F., 2019c. Gender diversity and women in software teams:
How do they affect community smells?, in: Proceedings of the
41st International Conference on Software Engineering: Soft-
ware Engineering in Society, IEEE Press. pp. 11–20.

[16] Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A., Fer-
rucci, F., 2020. Refactoring community smells in the wild: the
practitioner’s field manual, in: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: Soft-
ware Engineering in Society, pp. 25–34.

[17] Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for ob-
ject oriented design. IEEE Transactions on Software Engineer-
ing .

[18] Coleman, D., Ash, D., Lowther, B., Oman, P., 1994. Using
metrics to evaluate software system maintainability. Computer
27, 44–49. doi:10.1109/2.303623.

[19] Counsell, S., Liu, X., Eldh, S., Tonelli, R., Marchesi, M., Con-
cas, G., Murgia, A., 2015. Re-visiting the ’maintainability in-
dex’ metric from an object-oriented perspective, in: 2015 41st
Euromicro Conference on Software Engineering and Advanced
Applications, pp. 84–87. doi:10.1109/SEAA.2015.41.

[20] Cross, R., Liedtka, J., Weiss, L., 2005. A practical guide to
social networks. Harvard Business Review , –.

[21] Crowston, K., Howison, J., 2005. The social structure of free
and open source software development. First Monday 10.

[22] Crowston, K., Shamshurin, I., 2017. Core-periphery
communication and the success of free/libre open source
software projects. J. Internet Serv. Appl. 8, 10:1–
10:11. URL: http://dblp.uni-trier.de/db/journals/jisa/
jisa8.html#CrowstonS17.

[23] De Stefano, M., Pecorelli, F., Iannone, E., Tamburri,
D.A., 2021. Impacts of software community patterns on
process and product: An empirical study. URL: https:
//figshare.com/articles/dataset/Impacts_of_Software_
Community_Patterns_on_Process_and_Product_An_Empirical_
Study/13140182/3, doi:10.6084/m9.figshare.13140182.v2.

[24] De Stefano, M., Pecorelli, F., Tamburri, D.A., Palomba, F.,
De Lucia, A., 2020. Splicing community patterns and smells:
A preliminary study, in: Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops,
Association for Computing Machinery, New York, NY, USA.
p. 703–710. URL: https://doi.org/10.1145/3387940.3392204,
doi:10.1145/3387940.3392204.

[25] Falessi, D., Smith, W., Serebrenik, A., 2017. Stress: A semi-
automated, fully replicable approach for project selection., in:
ESEM, IEEE. pp. 151–156. URL: http://dblp.uni-trier.de/
db/conf/esem/esem2017.html#FalessiSS17.

[26] Fisher, R.A., 1922. On the Interpretation of chi2 from Contin-
gency Tables, and the Calculation of P. Journal of the Royal
Statistical Society 85, 87–94. URL: http://dx.doi.org/10.
2307/2340521, doi:10.2307/2340521.

[27] Gallagher, S., 2006. Introduction: The arts and sciences of the
situated body. Janus Head 9, 1–2.

[28] Ganpati, A., Kalia, A., Singh, H., 2012. A comparative study
of maintainability index of open source software.

[29] Giatsidis, C., Thilikos, D.M., Vazirgiannis, M., 2011. Evaluating
cooperation in communities with the k-core structure, in: 2011
International conference on advances in social networks analysis
and mining, IEEE. pp. 87–93.

[30] Giatsidis, C., Thilikos, D.M., Vazirgiannis, M., 2013. D-cores:
measuring collaboration of directed graphs based on degeneracy.
Knowledge and information systems 35, 311–343.

[31] Gill, G., Kemerer, C., 1992. Cyclomatic complexity density and
software maintenance productivity. Software Engineering, IEEE
Transactions on 17, 1284 – 1288. doi:10.1109/32.106988.

[32] Grinter, R.E., Herbsleb, J.D., Perry, D.E., 1999. The geog-
raphy of coordination: dealing with distance in r&d work, in:
Proceedings of the international ACM SIGGROUP conference
on Supporting group work, ACM. pp. 306–315.

[33] Halstead, M., 1977. Elements of software science.
[34] Heitlager, I., Kuipers, T., Visser, J., 2007. A practical model

for measuring maintainability, in: 6th International Conference
on the Quality of Information and Communications Technology
(QUATIC 2007), pp. 30–39. doi:10.1109/QUATIC.2007.8.

[35] Henderson-Sellers, B., Tegarden, D., 1994. A critical re-
examination of cyclomatic complexity measures., in: Lee,
M.K.O., Barta, B.Z., Juliff, P. (Eds.), Software Qual-
ity and Productivity, Chapman & Hall. pp. 328–335.
URL: http://dblp.uni-trier.de/db/conf/icsqp/icsqp1994.
html#Henderson-SellersT94.

[36] Herbsleb, J.D., Grinter, R.E., 1999. Architectures, coordina-
tion, and distance: Conway’s law and beyond. IEEE software
16, 63–70.

[37] Hislop, D., 2004. Knowledge Management In Orga-
nizations: A Critical Introduction. Oxford University
Press. URL: http://www.amazon.co.uk/exec/obidos/ASIN/
0199262063/citeulike-21.

[38] Højsgaard, S., Halekoh, U., Yan, J., 2005. The r package geep-
ack for generalized estimating equations. Journal of Statisti-
cal Software, Articles 15, 1–11. URL: https://www.jstatsoft.
org/v015/i02, doi:10.18637/jss.v015.i02.

[39] Ito, K., Washizaki, H., Fukazawa, Y., 2016. Handover anti-
patterns, in: Proceedings of the 5th Asian Conference on Pat-
tern Language of Programs (Asian PLoP 2016), Taipei, Taiwan.

http://dx.doi.org/10.1109/ISSRE.2009.17
http://doi.acm.org/10.1145/1414004.1414008
http://doi.acm.org/10.1145/1414004.1414008
http://dx.doi.org/http://doi.acm.org/10.1145/1414004.1414008
http://dx.doi.org/http://doi.acm.org/10.1145/1414004.1414008
http://portal.acm.org/citation.cfm?id=1414008
http://dx.doi.org/http://doi.acm.org/10.1145/1414004.1414008
http://dx.doi.org/10.1109/2.303623
http://dx.doi.org/10.1109/SEAA.2015.41
http://dblp.uni-trier.de/db/journals/jisa/jisa8.html#CrowstonS17
http://dblp.uni-trier.de/db/journals/jisa/jisa8.html#CrowstonS17
https://figshare.com/articles/dataset/Impacts_of_Software_Community_Patterns_on_Process_and_Product_An_Empirical_Study/13140182/3
https://figshare.com/articles/dataset/Impacts_of_Software_Community_Patterns_on_Process_and_Product_An_Empirical_Study/13140182/3
https://figshare.com/articles/dataset/Impacts_of_Software_Community_Patterns_on_Process_and_Product_An_Empirical_Study/13140182/3
https://figshare.com/articles/dataset/Impacts_of_Software_Community_Patterns_on_Process_and_Product_An_Empirical_Study/13140182/3
http://dx.doi.org/10.6084/m9.figshare.13140182.v2
https://doi.org/10.1145/3387940.3392204
http://dx.doi.org/10.1145/3387940.3392204
http://dblp.uni-trier.de/db/conf/esem/esem2017.html#FalessiSS17
http://dblp.uni-trier.de/db/conf/esem/esem2017.html#FalessiSS17
http://dx.doi.org/10.2307/2340521
http://dx.doi.org/10.2307/2340521
http://dx.doi.org/10.2307/2340521
http://dx.doi.org/10.1109/32.106988
http://dx.doi.org/10.1109/QUATIC.2007.8
http://dblp.uni-trier.de/db/conf/icsqp/icsqp1994.html#Henderson-SellersT94
http://dblp.uni-trier.de/db/conf/icsqp/icsqp1994.html#Henderson-SellersT94
http://www.amazon.co.uk/exec/obidos/ASIN/0199262063/citeulike-21
http://www.amazon.co.uk/exec/obidos/ASIN/0199262063/citeulike-21
https://www.jstatsoft.org/v015/i02
https://www.jstatsoft.org/v015/i02
http://dx.doi.org/10.18637/jss.v015.i02

[40] Jansen, S., 2014. Measuring the health of open source software
ecosystems: Beyond the scope of project health. Information
and Software Technology 56, 1508–1519.

[41] Jarvenpaa, S.L., Leidner, D.E., 1999. Communication and
trust in global virtual teams. ORGANIZATION SCIENCE
10, 791–815. URL: http://orgsci.journal.informs.org/cgi/
content/abstract/10/6/791, doi:10.1287/orsc.10.6.791.

[42] Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.,
2015a. From developer networks to verified communities: A
fine-grained approach, in: Proceedings of the 37th International
Conference on Software Engineering - Volume 1, IEEE Press,
Piscataway, NJ, USA. pp. 563–573. URL: http://dl.acm.org/
citation.cfm?id=2818754.2818824.

[43] Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.,
2015b. From developer networks to verified communities: A
fine-grained approach., in: Proceedings of the 37th Interna-
tional Conference on Software Engineering (ICSE 2015), ACM
Press, Piscataway (NY), US. pp. 563–573. doi:10.1109/ICSE.
2015.73.

[44] Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., Ger-
mán, D.M., Damian, D.E., 2016. An in-depth study of the
promises and perils of mining github. Empirical Software Engi-
neering 21, 2035–2071. URL: http://dblp.uni-trier.de/db/
journals/ese/ese21.html#KalliamvakouGBS16.

[45] Kaur, K., Singh, H., 2011. Determination of maintainability
index for object oriented systems. SIGSOFT Softw. Eng. Notes
36, 1–6. URL: https://doi.org/10.1145/1943371.1943383,
doi:10.1145/1943371.1943383.

[46] Kwan, I., Schroter, A., Damian, D., 2011. Does socio-technical
congruence have an effect on software build success? a study
of coordination in a software project. IEEE Trans. Softw. Eng.
37, 307–324. doi:10.1109/TSE.2011.29.

[47] Martini, A., Bosch, J., 2017. Revealing social debt
with the caffea framework: An antidote to architectural
debt., in: ICSA Workshops, IEEE Computer Society. pp.
179–181. URL: http://dblp.uni-trier.de/db/conf/icsa/
icsaw2017.html#MartiniB17.

[48] McCabe, T.J., 1976. A complexity measure. IEEE Transactions
on Software Engineering SE-2, 308–320. doi:10.1109/TSE.1976.
233837.

[49] Meneely, A., Williams, L., 2011. Socio-technical developer net-
works: Should we trust our measurements?, in: Proceedings of
the 33rd International Conference on Software Engineering, pp.
281–290.

[50] Morrison, C., 2003. Interpret with caution: Multicollinearity
in multiple regression of cognitive data. Perceptual and motor
skills 97, 80–2. doi:10.2466/PMS.97.5.80-82.

[51] Nagappan, N., Murphy, B., Basili, V., 2008. The influence of or-
ganizational structure on software quality, in: 2008 ACM/IEEE
30th International Conference on Software Engineering, IEEE.
pp. 521–530.

[52] Nakakoji, K., Yamamoto, Y., NISHINAKA, Y., Kishida, K.,
Ye, Y., 2003. Evolution patterns of open-source software sys-
tems and communities. International Workshop on Principles
of Software Evolution (IWPSE) doi:10.1145/512035.512055.

[53] Nelder, J.A., Wedderburn, R.W., 1972. Generalized linear mod-
els. Journal of the Royal Statistical Society: Series A (General)
135, 370–384.

[54] Nordio, M., Estler, H.C., Meyer, B., Tschannen, J., Ghezzi, C.,
Di Nitto, E., 2011. How do distribution and time zones af-
fect software development? a case study on communication, in:
2011 IEEE Sixth International Conference on Global Software
Engineering, IEEE. pp. 176–184.

[55] O’Brien, R., 2007. A caution regarding rules of thumb for
variance inflation factors. Quality & Quantity 41, 673–690.
doi:10.1007/s11135-006-9018-6.

[56] Olsson, J., Sandell, J., 2009. Enterprise 2.0 as a way to facilitate,
enhance, and coordinate intelligence work within large organi-
zations: A case study at toyota material handling europe. 3rd
European Competitive Intelligence Symposium (ECIS 2009) .

[57] Oman, P., Hagemeister, J., 1994. Construction and testing

of polynomials predicting software maintainability. Journal
of Systems and Software 24, 251 – 266. URL: http://www.
sciencedirect.com/science/article/pii/0164121294900671,
doi:https://doi.org/10.1016/0164-1212(94)90067-1. oregon
Workshop on Software Metrics.

[58] Oomes, A., 2004. Organization awareness in crisis management,
in: Proceedings of the international workshop on information
systems on crisis response and management (ISCRAM).

[59] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto,
R., De Lucia, A., 2018a. A large-scale empirical study on the
lifecycle of code smell co-occurrences. Information and Software
Technology 99, 1–10.

[60] Palomba, F., Bavota, G., Penta, M.D., Oliveto, R., Poshyvanyk,
D., Lucia, A.D., 2015. Mining version histories for detecting
code smells. IEEE Transactions on Software Engineering 41,
462–489. doi:10.1109/TSE.2014.2372760.

[61] Palomba, F., Tamburri, D.A.A., Fontana, F.A., Oliveto, R.,
Zaidman, A., Serebrenik, A., 2018b. Beyond technical aspects:
How do community smells influence the intensity of code smells?
IEEE Transactions on Software Engineering .

[62] Palomba, F., Zanoni, M., Fontana, F.A., De Lucia, A., Oliveto,
R., 2016. Smells like teen spirit: Improving bug prediction per-
formance using the intensity of code smells, in: 2016 IEEE In-
ternational Conference on Software Maintenance and Evolution
(ICSME), IEEE. pp. 244–255.

[63] Persson, A., Stirna, J., 2006. How to transfer a knowledge
management approach to an organization–a set of patterns and
anti-patterns, in: International Conference on Practical Aspects
of Knowledge Management, Springer. pp. 243–252.

[64] Ruikar, K., Koskela, L., Sexton, M., 2009. Communi-
ties of practice in construction case study organisations:
Questions and insights. Construction Innovation 9, 434–
. URL: http://proquest.umi.com/pqdweb?did=1920022811&
amp;Fmt=7&clientId=4574&RQT=309&VName=PQD.

[65] Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test
for normality (complete samples)†. Biometrika 52, 591–611.
URL: https://doi.org/10.1093/biomet/52.3-4.591, doi:10.
1093/biomet/52.3-4.591.

[66] Shepperd, M., 1988. A critique of cyclomatic complexity as a
software metric. Software Engineering Journal 3, 30–36.

[67] Spearman, C., 2010. The proof and measurement of associa-
tion between two things. International Journal of Epidemiology
39, 1137–1150. URL: https://doi.org/10.1093/ije/dyq191,
doi:10.1093/ije/dyq191.

[68] Stirna, J., Persson, A., 2009. Anti-patterns as a means of focus-
ing on critical quality aspects in enterprise modeling, in: En-
terprise, Business-Process and Information Systems Modeling.
Springer, pp. 407–418.

[69] Tamburri, D.A., Kazman, R., Fahimi, H., 2016. The architect’s
role in community shepherding. IEEE Software 33, 70–79.

[70] Tamburri, D.A., Kruchten, P., Lago, P., Van Vliet, H., 2015a.
Social debt in software engineering: insights from industry.
Journal of Internet Services and Applications 6, 10.

[71] Tamburri, D.A., Kruchten, P., Lago, P., van Vliet, H., 2013a.
What is social debt in software engineering?, in: Cooperative
and Human Aspects of Software Engineering (CHASE), 2013
6th International Workshop on, pp. 93–96. doi:10.1109/CHASE.
2013.6614739.

[72] Tamburri, D.A., Kruchten, P., Lago, P., van Vliet, H.,
2015b. Social debt in software engineering: insights from
industry. J. Internet Services and Applications 6, 10:1–
10:17. URL: http://dblp.uni-trier.de/db/journals/jisa/
jisa6.html#TamburriKLV15.

[73] Tamburri, D.A., Kruchten, P., Lago, P., van Vliet, H.,
2015c. Social debt in software engineering: insights from
industry. J. Internet Services and Applications 6, 10:1–
10:17. URL: http://dx.doi.org/10.1186/s13174-015-0024-6,
doi:10.1186/s13174-015-0024-6.

[74] Tamburri, D.A., Lago, P., van Vliet, H., 2013b. Organizational
social structures for software engineering. ACM Comput. Surv.
46, 3.

http://orgsci.journal.informs.org/cgi/content/abstract/10/6/791
http://orgsci.journal.informs.org/cgi/content/abstract/10/6/791
http://dx.doi.org/10.1287/orsc.10.6.791
http://dl.acm.org/citation.cfm?id=2818754.2818824
http://dl.acm.org/citation.cfm?id=2818754.2818824
http://dx.doi.org/10.1109/ICSE.2015.73
http://dx.doi.org/10.1109/ICSE.2015.73
http://dblp.uni-trier.de/db/journals/ese/ese21.html#KalliamvakouGBS16
http://dblp.uni-trier.de/db/journals/ese/ese21.html#KalliamvakouGBS16
https://doi.org/10.1145/1943371.1943383
http://dx.doi.org/10.1145/1943371.1943383
http://dx.doi.org/10.1109/TSE.2011.29
http://dblp.uni-trier.de/db/conf/icsa/icsaw2017.html#MartiniB17
http://dblp.uni-trier.de/db/conf/icsa/icsaw2017.html#MartiniB17
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/10.2466/PMS.97.5.80-82
http://dx.doi.org/10.1145/512035.512055
http://dx.doi.org/10.1007/s11135-006-9018-6
http://www.sciencedirect.com/science/article/pii/0164121294900671
http://www.sciencedirect.com/science/article/pii/0164121294900671
http://dx.doi.org/https://doi.org/10.1016/0164-1212(94)90067-1
http://dx.doi.org/10.1109/TSE.2014.2372760
http://proquest.umi.com/pqdweb?did=1920022811&Fmt=7&clientId=4574&RQT=309&VName=PQD
http://proquest.umi.com/pqdweb?did=1920022811&Fmt=7&clientId=4574&RQT=309&VName=PQD
https://doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/ije/dyq191
http://dx.doi.org/10.1093/ije/dyq191
http://dx.doi.org/10.1109/CHASE.2013.6614739
http://dx.doi.org/10.1109/CHASE.2013.6614739
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://dblp.uni-trier.de/db/journals/jisa/jisa6.html#TamburriKLV15
http://dx.doi.org/10.1186/s13174-015-0024-6
http://dx.doi.org/10.1186/s13174-015-0024-6

[75] Tamburri, D.A., Nitto, E.D., 2015. When software architecture
leads to social debt, in: 2015 12th Working IEEE/IFIP Confer-
ence on Software Architecture, ACM Press, Piscataway (NY),
US. pp. 61–64. doi:10.1109/WICSA.2015.16.

[76] Tamburri, D.A., Palomba, F., Serebrenik, A., Zaidman, A.,
2018. Discovering community patterns in open-source: a sys-
tematic approach and its evaluation. Empirical Software Engi-
neering 24, 1369–1417.

[77] Tamburri, D.A., Palomba, F., Serebrenik, A., Zaidman, A.,
2019a. Discovering community patterns in open-source: A sys-
tematic approach and its evaluation. Empirical Software Engi-
neering 24, 1369–1417.

[78] Tamburri, D.A.A., Palomba, F., Kazman, R., 2019b. Explor-
ing community smells in open-source: An automated approach.
IEEE Transactions on Software Engineering .

[79] Tourani, P., Adams, B., Serebrenik, A., 2017. Code of con-

duct in open source projects, in: 2017 IEEE 24th Interna-
tional Conference on Software Analysis, Evolution and Reengi-
neering (SANER), ACM, Piscataway (NY), US.. pp. 24–33.
doi:10.1109/SANER.2017.7884606.

[80] Tseitlin, A., 2013. The antifragile organization. Commun. ACM
56, 40–44.

[81] Welker, K., 2001. Software maintainability index revisited. J.
Def. Softw. Eng none.

[82] Zich, J., Kohayakawa, Y., Rödl, V., Sunderam, V., 2008. Jump-
net: Improving connectivity and robustness in unstructured
p2p networks by randomness. Internet Mathematics 5, 227–
250. URL: http://dblp.uni-trier.de/db/journals/im/im5.
html#ZichKRS08.

[83] Zimmermann, T., Zeller, A., Weissgerber, P., Diehl, S., 2005.
Mining version histories to guide software changes. IEEE Trans-
actions on Software Engineering 31, 429–445.

http://dx.doi.org/10.1109/WICSA.2015.16
http://dx.doi.org/10.1109/SANER.2017.7884606
http://dblp.uni-trier.de/db/journals/im/im5.html#ZichKRS08
http://dblp.uni-trier.de/db/journals/im/im5.html#ZichKRS08

	Introduction
	Related Work
	Research Questions and Context Selection
	Research Questions
	Context of the Study

	RQ1 - On the Relation Between Community Patterns and Community Smells
	Research Methodology
	Results Analysis

	RQ2, RQ3 - On the Impact of Community Patterns on Process and Product
	Research Methodology
	Results Analysis

	Discussion and Implications
	Practical Implications: Software Community Management and Beyond
	Community Management in Practice: A focused look
	Observations and Lessons Learned

	Threats to Validity
	Threats to Construct Validity
	Threats to Conclusion Validity
	Threats to External Validity

	Conclusion and Future Work

